

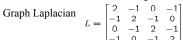
Group Meeting Synchronization with Human Interaction

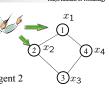
本

Objective

Controlling a Quadrotor Using Kinect

Controlling Swarms


Problem Settings (Consensus Estimator)


Settings

Four Agents A_1, A_2, A_3, A_4

Agent's position $x = [x_1 \ x_2 \ x_3 \ x_4]^T$

 $\begin{array}{ll} \mbox{Command Vector} & E = [\mbox{1 1 0 0}]^T \\ \mbox{human can send a command to agent 1 and agent 2} \\ \end{array}$

desired velocity

Desired Motion Image $r = [r_x 1 r_y 1 r_z 1]$

Dynamics

$$\dot{v} = -Lx$$
$$\dot{x} = -Lx + Lv + Ev_d$$

$$\lim_{t \to \infty} (x_i - x_j) = 0, \ \forall i, j$$

$$\lim_{t \to \infty} (v_i - v_j) = 0, \ \forall i, j$$

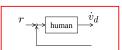
Key Point

Consensus

Dynamics

Energy Function

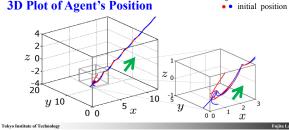
 $V = \frac{1}{2}x^T L x$


Derivative of V

Human Interaction

$$\dot{v} = -Lx \\ \dot{x} = -Lx + Lv + Ev_d$$

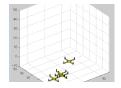
$$V = \frac{1}{2}(u-r)^{T}(u-r) + \frac{1}{2}x^{T}L^{2}x$$


Feedback the information to a human to delete the extra term

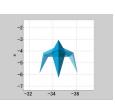
Simulation Result

Simulation Settings

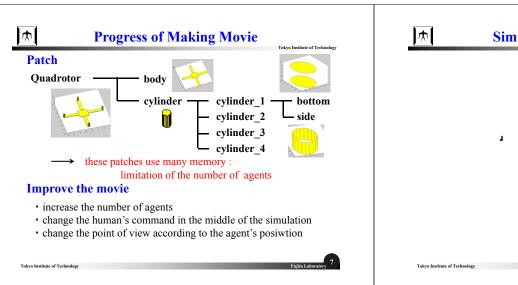
3D Plot of Agent's Position

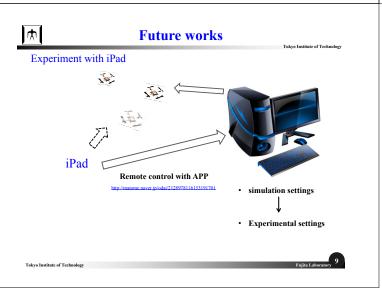


$|\psi|$


Simulation Movie

First My Movie


$$r = [0.4 \ 0.3 \ 0.1]$$



Aoki's Movie

Tokyo Institute of Technolog

