Weighted Coverage Control with Voronoi Partition

\mid |

Koudai Sugimoto

Coverage Control
Control position of each agent to cover a designated area effectively.

- Importance of the area is uniform.
- Performance of each agent is the same.

Voronoi diagram: An approach to this control

$$
V\left(p_{i}\right)=\left\{p \mid d\left(p, p_{i}\right) \leqq d\left(p, p_{j}\right), j \neq i\right\}
$$

p_{i} : Position of agent i
$V\left(p_{i}\right)$: Voronoi region of agent i
$d\left(p, p_{i}\right)$: Distance between p and p_{i}
r_{i} : Reference position of agent $i\left(\right.$ Centroid of $V\left(p_{i}\right)$)

Procedure on coverage control $\left({ }^{\forall} i\right)$

1. Get p_{i}
2. Calculate $V\left(p_{i}\right)$
3. Calculate r_{i}
4. Move agent i to r_{i}
5. Repeat until $p_{i}=r_{i}$

| $\star \mid$ Derivation of $r_{i}\left(\right.$ Centroid of $\left.V\left(p_{i}\right)\right)$
$r_{i, j}=\left(\frac{\sum_{k} \rho x_{i, j, k}}{\sum_{k} \rho}, \frac{\sum_{k} \rho y_{i, j, k}}{\sum_{k} \rho}\right) \quad r_{i}=\left(\frac{\sum_{j} \sum_{k} \rho x_{i, j, k}}{\sum_{j} \sum_{k} \rho}, \frac{\sum_{j} \sum_{k} \rho y_{i, j, k}}{\sum_{j} \sum_{k} \rho}\right)$
$T\left(j, p_{i}\right)$: A triangle constituting $V\left(p_{i}\right) \quad r_{i, j}$: Centroid of $T\left(j, p_{i}\right)$
$\left(x_{i, j, k}, y_{i, j, k}\right)$: kth point in $T\left(j, p_{i}\right)$
Procedure on derivation of r_{i}
6. Divide $V\left(p_{i}\right)$ into $T\left(j, p_{i}\right)$
7. Derive $r_{i, j}$
8. Derive r_{i}

If designated area is convex, $V\left(p_{i}\right)$ is also convex.
$\Rightarrow \quad V\left(p_{i}\right)$ can be divided into some triangles easily.
$\Rightarrow \quad$ We have to consider only triangles for any $V\left(p_{i}\right)$.

Advantages of Variable Weight

Express $T\left(j, p_{i}\right)$ as a set of square.

$$
r_{i, j}=\left(\frac{\sum_{k} \rho x_{i, j, k} d s}{\sum_{k} \rho d s}, \frac{\sum_{k} \rho y_{i, j, k} d s}{\sum_{k} \rho d s}\right)=\left(\frac{\sum_{k} \rho x_{i, j, k}}{\sum_{k} \rho}, \frac{\sum_{k} \rho y_{i, j, k}}{\sum_{k} \rho}\right)
$$

$\left(x_{i, j, k}, y_{i, j, k}\right)$: kth red point in $T\left(j, p_{i}\right) \quad \rho$: Weight $d s$: Area of a square $d m=\rho\left(x_{i, j, k}, y_{i, j, k}\right) d s$

- Shape of the square is fixed.

$$
\left(x_{i, j, k}, y_{i, j, k}\right)
$$

- Weight at the red point represents weight at whole points in the square.

