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Background
Multi-agent System

system composed of multiple interacting intelligent agent
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be used to solve problem that are difficult or impossible for an agent
Example

formation flight

cooperative control of UAVs

sensor network
energy network

there are signal exchanges via local interaction

Communication Network

agents within a limited communication range

can exchange information or interact directly
. o

graph based interaction model
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Background o

Approach %@
Consensus[1-7]
Objective % %

to reach an agreement in networks of agents.
the speed of reaching a consensus is the key issue[4
Application

formation control, flocking, sensor network, attitude alignment

Evolutionary Dynamics in social networks[8-12]

Objective

to forecast and control the behaviors in social networks
Application

analysis of social phenomena, crowd simulation

Orientation

_based on Evolutionary Dynamics

ﬁconsider the speed of convergence
Tcky;l nstitute of Technology

Consensusin Networked Systems[1-7]

Network Topology
G=(V,E,A) V={vy,rw.} vi s agent

connected undirected graph E = {(b. bj),: @ij > 0}_
) A = [ai;] : adjacency matrix
Consensus Dynamics

x(t) = —Lx(t) L =D - A D:degree matrix

solves a consensus problem achi evea aver age consensu s

x(0) = (21, -+ z,): initial state = X~ yoeesa) la=1/nYy, 2

Algepralc Connectmt.y ve
the eigenvalues of Laplacian
D=M< A< 0 A, ‘o a9
A2 : measure of speed of convergence Az =2 Xy =06
= maximize the second smallest eigenvalues[2]

- small world network gives considerably larger A5 [5]
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Conver gence Speed*

Reaching Agreement
U =[u; uz --- uy,)| : matrix consisting of eigenvectors of L

X(t) = —Ix(t)
— x(t)=eFxo
— x(t) = e M (ufxo)us + e " (uFxo)uz

4o e M (ulxo)uy,
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x(t) = (uTxo)uy = 1221 (A1 =0)

T

A2 is the smallest positive eigenvalue of the Laplacian
m) o is the slowest mode of convergence

[[ A2 isthe measure of speed of convergence of the consensus algorithm ]]
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Evolutionary Dynamicsin Social Networ kg[8-12]
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Behavior Network Topology

G=(V,E,A) /= {by, by} bi: behavior (action)
connected E = {(bi, b;) : aj; > 0}
undirected graph A= [(:,-J-] - adjacency matrix (assump. : a;; = 1, Vi)
Replicator Mutator Dynamics(RM D)
, = Ax Payoff
b= fTx :average payoff
L=1-D""'A :fixed 4+ > 0 : mutation parameter (constant)
Diversity
how many species exist in steady state <" ‘

2 = I — pL : social choice mode

2
ne =1/ |
» roll of the structure of network 5 ol n =50
and i on diversity[10] 0 I i

+ small-world network improve the diversity on homogeneous networks[11]




Diver sity*
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Phasesfor Evolution[8]

ne:I/Zx? 1<n.<n
NET® e H x
@ Behavioral Flocking 1 0 mpe=lz=0,¥j#i
(@ Cohesion l<n.<n
@ Collapse l€n.<n
@ Complete Collapse n X Ti=1/n Vi
Behavioral . Complete
Example @'y, @ Cohesin @ Collapse @ g
node : 10 =20 I{IZO,I 1!1.:3 ,u,:?
L !
L4 L Ly L
W S
= ] % o 10
circlegraph ne =1 ne = 1.23
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Comparison of Two Approaches
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Consensus Dynamics | Evolutionary dynamics

Networ k graph theory (node, edge)
Graph Laplacian [ =D — A L=I-D7'4mM
LR T .
Dynamics x=-Lx = _((JC‘?: ff‘—];!; v
Features = convergence speed diversity
o 01 11 1111
1010 1110
A 1101 1111 (a;=1)
1010 101 1

‘ D diag(3,2,3,2) diag(4.3,4.3)
e 0 3 -1 -1 —1 0.75 —0.25 —0.25 —0.25
e

1 2 -1 0 -0.33 0.67 -0.33 0
-1 -1 3 -1 -0.25 -0.25 0.75 -0.25
-1 0 -1 2 —0.33 0 —0.33  0.67

[*]11]. A. Fax, R. M. Murray, “Information Flow and Cooperative Control of Vehicle Formations, ”

Purpose of Study
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Orientation
= use the RMD model gpeed
. deal with not only consensus con- &
but also population of a certain behavior sensus RMD

/graph theor})\ / graph theorﬁ\
Consensus RMD

5z consider the convergence speed based on
#second smallest eigenvalue in RMD model
—> some kind of adjustment for Laplacian of RMD model is nesessary
Simulation Example

Settings: xp =[0.1020304]" p=1 a=05

D—0p Eﬁj C’v‘ F
9‘9 o

j . m———5 1 1

B s
0 10 20 _30 40 50
0 10 29 30 40 50 step
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Future Works
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RMD Model Analysis ex.
simulation for various network structure

network structure and diversity
relation between | mutation parameter and diversity

_ initial value and diversity

Convergence Speed in RMD Model
relation between network structure and convergence speed

small-world network

connection between the second smallest eigenvalue and RMD model

Time-varying Parameter or Switching Topology

in case W is not constant

in case network structure is time-varying =
Concrete Situation Settings

consider the application

ex) formation control, power network, decision making control
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