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Introduction

42 related presentations. (6 related sessions)
CDC 2012: Game Theory

Standard Analysis

OptNE!!

Motivation Following Changing Optimal Equilibria[2]
Quantitative Analysis
using (Potential) Game Theoretic Learning

Problem:

under Dynamic/Uncertain Environment

under Stationary Environment
Natural Analysis

Fixed Game

Game Structure
Utility Design
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complex

Environmental Change (Natural Phenomena)

Perturbation (depending on Learning algorithms)
The change of optimal points

Exploration Parameter

[2] Y. Wasa, T. Goto, T. Hatanaka and M. Fujita, “Seeking Optimal Equilibria for Coverage Games: Payoff-
based Learning Approach,” Trans. ISCIE, Vol. 25, No. 9, pp. 247-255, 2012.

1. Performance in the neighborhood of perturbed global optimaAnalysis[1]:
2. Robustness in game theoretic learning rules
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Preliminaries[1]: Stationary Distribution*

For
Notations

: the usual Euclidean norm,
: the associated induced matrix normFor ,

: the probability simplex
: the set of            stochastic matrices

: a Markov chain over some state space

In case      has a single aperiodic recurrent class, there exists a unique 
stationary distribution                  such that                     and

,

The state space     is the 
same that the action 
set     in game theory.

depends on a 
learning algorithm and 
an environment.
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Preliminaries[1]: Stochastic Stability*

[3] H. P. Young, Individual Strategy and Social Structure: An Evolutionary Theory of Institutions, 
Princeton University Press, 2001.

Definition (Regular Perturbation)
Let                define a Markov chain on     . Let                                       define a 
family Markov chains on     . The family          is a regular perturbation of          
if i)

ii)
iii)

each       has a single aperiodic recurrent class
for each                ,
There exists a                     such that 

where      is the unique stationary distribution of
Remark:

Definition (Stochastically Stable)
Let           be a regular perturbation of       . A state             is stochastically 
stable if

Remark: The stochastically stable states are contained in the recurrent 
communication classes with minimum stochastic potential

iii) is different from the original[3]
If , then s.t.
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Perturbed System and Theorems in [1]
A perturbed stochastic system[1] At each stage              ,

the state the transition probability matrix,
Update Rule: Markov Chain (discrete time system)

(1)

Theorem 1
Let                   have a single aperiodic recurrent class, and let                       be the 
associated stationary distribution over finite state space    . For any             , there 
exists a               such that for the dynamic process defined by (1)

,

Theorem 2
Let                 be a compact set. For each            , let           be a regular perturbation 
of        , and let       be the associated distribution characterizing stochastic stability. 
Furthermore, for each    , let                be continuous. Let the dynamic process (1) 
satisfy                                         and                                               . For any             , there 
exist            and              such that ,
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Pr

Theorem 1 in [1]: Analysis

Theorem 1
Let                   have a single aperiodic recurrent class, and let                       be the 
associated stationary distribution over finite state space    . For any             , there 
exists a               such that for the dynamic process defined by (1)

,

Interpretation:

, …,limsup( ), …,limsup( )

Remark: Even in case                    , the above theorem is satisfied. (Corollary 1 in [1])
( )s.t.
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Theorem1 in [1]: Sketch of Proof*

,

,

prob. dis. state ,,

:                       matrix 
with orthonormal columns

,

Notations ,
Switching Linear System error

Point: : a single aperiodic recurrent class : a stability matrix

[4] M. Vidyasagar, (Hidden) Markov Processes: Theory and Applications to Biology, Princeton University 
Press, Theorem 4.21 (4.24), Corollary 5.12, under preparation.

(    [4] and the property of matrix transformation)
s.t. and

(    discrete Lyapunov equation)
Lyapunov function

then any s.t.
(Lyapunov argument)

Error equation
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Theorem 2 in [1]: Analysis

Theorem 2
Let                 be a compact set. For each            , let           be a regular perturbation 
of        , and let       be the associated distribution characterizing stochastic stability. 
Furthermore, for each    , let                be continuous. Let the dynamic process (1) 
satisfy                                         and                                               . For any             , there 
exist            and              such that ,

Interpretation:

Exploration perturbation
External perturbation
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Theorem 2 in [1]: Sketch of Proof*

Notations Same as Theorem 1 in [1]

error

Switching Linear System

add( )

,

s.t. : continuous

,s.t. Stochastically stable

Similarly analysis in Theorem 1 in [1]
(cf. slowly varying Linear Parameter Varying (LPV) system[5])

[5] J. S. Shamma, “An overview of LPV Systems,” in Control of Linear Parameter Varying Systems with 
Applications, J. Mohammadpour and C. Scherer, Eds. Springer, pp. 3-26, 2012.
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Extensions 2, 3: Convergence Problem

If there are some obstacles, does its assumption hold? 
And how does “               : continuous” change?

2. In the theorem 1, suppose 

Solution:

: a compact set.

Is the following component possible?

: a compact set,
and : continuous

,

If it does not hold, the following assumption 
does not hold for all area.

: an open set,

3. If    changes dramatically (in other 
words, “               : discontinuous” exists), 
how do we evaluate it?

Solution:
We should consider that the changed state 
is a new initial state. So, its case is excluded.
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Extensions 4, 5: Learning Algorithm(LA)

Solution :

Corollary 3 [1]
Suppose that any              results in a potential game with potential function              . 
Then for either LLL or binary LLL, for every              , there exists a              and           
such that                                                                implies that

4. Corollaries 2-4 hold for LLL or Binary LLL(with a constrained action set). 
Do they hold for general LAs, especially PIPIP?

LAs (including PIPIP) which guarantees irreducible and aperiodic 
process and potential function maximizers are OK.
Do the authors in [1] write Corollaries 2-4 for simulations?

5. In [1], the statement “if a state              is not stochastically stable, then 
small perturbations limit the long run probability of visiting this state.” is 
written. At least, how long/steps must we run a LA?

Solution : No idea.
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Extensions 6, 7: Similarity of Approach

6. [1] uses Time-variant environmental function   . So, is it compatible with 
Estimated-state based potential game[8] or Bayesian (potential) game[9,10]?

[7] D. Monderer and L. Shapley, “Potential Games,” Games and Economic Behavior, Vol. 14, No. 1, pp. 124-
143, 1996.
[8] J. R. Marden, “State Based Potential Games,” submitted for journal publication, 2011.
[9] G. Facchini, F. V. Megen, P Borm and S. Tijs, “Congestion models and weighted Bayesian potential 
games,” Theory and Decision, Springer, Vol. 42, No. 2, pp. 193-206, 1997.
[10] T. Ui, “Robust Equilibria of Potential Games,” Econometrica, Vol. 69, No. 5, pp. 1373-1380, 2001.

Component of Potential Game (normal model[7])

Role of parameter
[1]
[8]
[9,10]

Environmental Parameter (nature/uncontrollable)
Estimation Values (depending on players’ actions)
Types (depending on players’ incentive/belief)

[7] Fixed (no role)

7. Can we prove the convergence of Error parameter     based on [11]?

Error equation
Switching Linear System

error

[11] H. K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall, 2002.


