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Background

TUM Workshop on Oct. 2012

12ACC

CDC12

“Event-based Control and Optimization”

9 related presentations

These days, Event-driven [-based, -triggered] Control gets much attention

“Event-triggered and Self-triggered Control” (Tutorial Session)
“Networked Event-based Control”
“Event-based Control”

3 related sessions

NecSys12
5 related presentations

Prof. Fujita attended and talked

Many Recent Journal Articles
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Event-driven Control [1-6]
The control signals are kept constant until the violation of a triggering 
condition on certain signals triggers the re-computation of  the control action
Compared with time-driven control (i.e. sample-data control), where constant 
and fast sampling rate is applied to guarantee stability in the worst case 
scenario, the possibility of reducing the number of re-computations, and thus 
of transmissions, while guaranteeing desired levels of performances, makes 
event driven control very appealing.
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Background

Technical Issues on Implementation of Feedback Control Laws
Most of works assume ideal continuous-time feedback, i.e. do NOT consider

Time of 

computation of feedback control laws with embedded microprocessors
sensor action: collecting and processing information
actuating the controller updates
digital communication (for in particular cooperative control)

It is important to assess to what extent we can increase the functionality of 
these embedded devices through novel real-time scheduling algorithms.

ideal

real
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Background and Research Objective

Research Objective
To propose a event-driven pose synchronization law, conduct 
convergence analysis and clarify the remaining issues to be solved 

Event-driven Cooperative Control

Technical Issues on Implementation of Cooperative Control Laws [7-12]
Although each agent actually acts in an asynchronous manners, most of works 
assume a synchronous implementation strategy regarding the control action 
updates and the scheduling of data transmissions among the coupled agents.

It is favorable that trigger conditions is defined by local 
information of the same neighbor agents as those of laws.

Previous Works: Attitude/Pose Synchronization [13-15] 
[13,14] consider communication delay, but does NOT 
consider other delay elements
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Today’s Outline

・ Simple Introduction to Event-driven Control

・ Background
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- Passivity-based Event-driven Position Synchronization
under Strongly Connected Digraphs 

- Analysis of Passivity-based Event-driven Attitude Synchronization

・ Passivity-based Event-driven Pose Synchronization

・ Conclusions and Next Challenges

・ Introduction to Event-driven Cooperative Control
- Event-driven Consensus Problem under Bidirectional Graphs
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Introduction to Event-driven Control
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The simplest example (based on [2,3])
Dynamics State Feedback Law ISS Lyapunov Function

The implementation of the state feedback law on an embedded processor is typically 
done by sampling the state at time instants                      , computing                                
and updating the actuator values at time instants                                              , where  

represents the time required to read the state from the sensors, compute the 
control law and update the actuators.

In this talk, we assume     is negligible, i.e.                         .

(constant for              )
Therefore, the actual state feedback law becomes

Measurement Error

Closed Loop System 
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Therefore, we set the following trigger condition

(**)

If (**) is satisfied at time     , then         is updated to                           . Namely, 
holds, and thus (*) is automatically satisfied.

Image of Trigger Condition [1]

Introduction to Event-driven Control
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Convergence Analysis
ISS Lyapunov Function

[3] claims that the simple execution rule (**) guarantees global asymptotic 
stability by construction.          ?? (Future Work)

Is there undesired behavior like Zeno bahavior [16]?
Question on Feasibility of the Scheduling Policy

If                                               holds, then we get(*)

is NOT continuously
differentiable
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Introduction to Event-driven Control
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Proof:
Since                                                   holds, we get

There exists time           such that the inter-execution time                  
implicitly defined by the execution rule (**) is lower bounded by

Theorem ([3, Theorem III.1]

Thus, if we define                   , we have                        (              ).
Now, find        s.t. satisfying                  .

for

Then, we obtain                                             .

Since                            , we get                            .

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Today’s Outline

・ Simple Introduction to Event-driven Control

・ Background

9

- Passivity-based Event-driven Position Synchronization
under Strongly Connected Digraphs 

- Analysis of Passivity-based Event-driven Attitude Synchronization

・ Passivity-based Event-driven Pose Synchronization

・ Conclusions and Next Challenges

・ Introduction to Event-driven Cooperative Control
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The simplest example (based on [4])

Dynamics Control Law Lyapunov Function Candidate
Simple:  Consensus, Bidirectional connected graphs, Synchronous approach

: graph Laplacian
: stacked state vector

Introduction to Event-driven Cooperative Control

GoalEvent-driven Consensus Law

(constant for              )Measurement Error

Closed Loop System 

: stacked error vector
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Convergence Analysis

If                                                holds, then we get                                        .(*)

Therefore, we set the following trigger condition

(**)

[4] claims that the simple execution rule 
(**) guarantees average consensus by 
using LaSalle’s Invariance Principle of 
hybrid systems [16].        ?? (Future Work)

Average Consensus

Introduction to Event-driven Cooperative Control

is NOT continuously
differentiable
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We next challenge the following issues:
Bidirectional → Strongly Connected
Synchronous → Asynchronous
Vector Space → SE(3)
Error Energy → Individual Energy (Passivity Approach)

12

The inter-event time                        implicitly defined by the rule (**) is 
lower bounded by a strictly positive time   .

Theorem ([4, Theorem 1])

Proof:

Thus, from the same analysis as in p. 8, 
we get

Introduction to Event-driven Cooperative Control
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- Passivity-based Event-driven Position Synchronization
under Strongly Connected Digraphs 

- Analysis of Passivity-based Event-driven Attitude Synchronization

・ Passivity-based Event-driven Pose Synchronization

・ Conclusions and Next Challenges

・ Introduction to Event-driven Cooperative Control
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represents the last broadcasted output 
information of    at its event time    .

denotes the last transmitted output 
information of    at its event time    .
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Dynamics Event-driven Position Synchronization Law

Passivity-based Event-driven Position Synch.

Interconnection Topology: Strongly Connected Digraphs

GoalMeasurement Error

Trigger Conditions
(a): based on [10, 12] (b): more restrictive
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Lyapunov Function Candidate:

: determined by the 
strong connectivity

[10, 12] claim that since            and            hold, one can further conclude 
that                   , i.e.                                                       ?? (Future Work)

If                                                                 holds, then we get(*)

Trigger Condition (a)

(calc. process is omitted)

Convergence Analysis (based on [10, 12])

Passivity-based Event-driven Position Synch.

is NOT continuously
differentiable
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Passivity-based Event-driven Position Synch.

Discussion: When                                              , we can NOT obtain 

[10, 12] moreover claim that we get                            from

Counter Ex.)

Thus, we should use (more restrictive ) trigger condition (b). Then, we get

(i.e.                           )

Therefore, we can get 

Then, we conclude : Position Synchronization
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Lower Bound Analysis of the Inter-execution Time (based on [12])

Passivity-based Event-driven Position Synch.

For                      ,                                                                    holds. 

Thus the time for        to evolve from 0 to                                  is lower 

bounded by the solution to                                                     , and we get

So, the evolution of         during               is bounded

by the solution to 

When                goes to 0, how to assess     ?
Is there any constant value           satisfying           ? (Future Work)

×
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Dynamics Event-driven Attitude Synchronization Law

Passivity-based Event-driven Attitude Synch.

Goal

Measurement Error and Its Norm
(a): 

(b): 

Since                            holds for appropriate                        , the 
measurement error (b) should be defined in                         . 
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Convergence Analysis 1: Measurement Error (a) 

Passivity-based Event-driven Attitude Synch.

Lyapunov Function Candidate:

: determined by the 
strong connectivity
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Passivity-based Event-driven Attitude Synch.
Tool:

if             holds

failed orz…
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Convergence Analysis 2: Measurement Error (b) 

Passivity-based Event-driven Attitude Synch.

Lyapunov Function Candidate:

: determined by the 
strong connectivity

Therefore, we have to guarantee                                                    
under the proposed event-driven control law (Future Work) 

if             holds
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Passivity-based Event-driven Attitude Synch.

If                                                                                             holds, then we get

Therefore we obtain                                              .

Probably, we can show that                           , i.e.                                             .  
(Future Work)

is NOT continuously
differentiable

Trigger Condition:

We next check whether                            holds. Similarly to p. 16, we utilize

Discussion: The condition implies l'Hôpital's Rule
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Lower Bound Analysis of the Inter-execution Time (based on [12])

Passivity-based Event-driven Attitude Synch.

For                      ,                                                                    
?

(omit            )

?? (Future Work)
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6. Continuation of Lower Bound Analysis of the Inter-execution Time
(in progress…)

Technical Issues to Be Solved
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1. Strict Convergence Analysis
Is it OK to claim the convergence to             from                                        ?

2. Strict Lower Bound Analysis of the Inter-execution Time
How to assess      when                goes to 0 ?                                                ?

3. Continuation of Convergence Analysis in the Measurement Error (a)
??

4. Guarantee of Positive Definiteness of Each Orientation
To prove that if                 , then                                                    holds.

5. Continuation of Convergence Analysis in the Measurement Error (b)

?
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Conclusion and Next Challenges

Conclusions
• introduced event-driven (cooperative) control problems through the simplest 
scalar examples
• proposed an event-driven position synchronization law and proved convergence 
under strongly connected digraphs
• proposed an event-driven attitude synchronization law and analyzed convergence 
• clarified the remaining issues to be solved

Next Challenges
• Detailed analysis of convergence to the set of equilibrium points
• Derivation of the lower bound of the inter-event time
• Verifications through simulation and experiments
• To finish writing Ph.D. thesis

Submit the conference paper to 13CDC
Submit a journal paper with further results next spring 
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