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Multi-agent System
A system composed of massive autonomous mobile agents
Advantage
Efficiency
Large Scale
Robustness
Application
Mobile Sensor Network
Intelligent Transportation Network
Self-Assembly
one of behavior with local interaction

Mobile Sensor Network Transportation Network

Flocking
A form of a Collective Behavior of interacting agents Self-Assembly
with a Common Group Objective
How to achieve? =) Cooperative Control
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Cooperative Control
A distributed control strategy using local information
so that multi-agent system achieve common group objective
Previous Work
Passivity-based Output Synchronization
and Flocking Algorithm in SE(3)

Group Objective
Implement flocking algorithm: alignment, cohesion and separation[2]
Formation Control based Approach
Group Objective
Micro: relative distance between agents
relative position between agents[3][4]
Macro: flock position, attitude and shape[5]-[7]
Other Approach
Group Objective

Keep both cohesion and scale-free property[8][9] n

Qutline
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Background

Flocking Algorithm in Fujita lab.

I nteraction-based research

Consider the Whole Flock research

Other Model research

Summary and Future Works
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Communication Graph

V:=1{L....n}: node set (agent)
&= x?: edge set (communication)
N, ={jev|(j.i)e & neighbor set (local information)

Output Synchronization Control Law v, &%, : desired velocity

bt i~ Chy ) v, )
VP =—K € 0 — ||+ . [ s } jefl....n
i i Jezm[l: ) | :":Sk e’fwl"m efut ) 0 e St esif @, € { }

Assumption
* Graphisfixed and strongly connected
* There exists % such that ™% :=e“%e*%e% vi are positive definite

Theorem: Output Synchronization
Consider the n agent represented previously.
Under the upper assumption,

the velocity control law achieves output synchronization
Tokyolnsituteof Technolay _M




Y. Igarashi[1]

Flocking Algorithm
Reynoldsg[ 2] introduced three rules to achieve flocking
« alignment
« cohesion(flock centering )
* separation(collision avoidance )
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The alignment and cohesion rules are already incorporated in the
proposed control law, however the separation is not

Definition: Collision
|Pui - P <ror >0

Sensing Graph
& ={i.)ev xur <|Pui = Pui] R}: edge set (sensing) R: sensing radius
N ={je V|(j.i)e &}: neighbor set (local information)
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Collision Avoidance - o
Assumption under initial condition, collision does not occur
Collision Avoidance Control

0 if R<|py - pu o, :
%7 s ifr<pri’pwJH<R ,4(R o' IHpm_pMH _R)
o, |notdefined if [p— py|=r (Ipu-n .Hz—r2)3

0 it Py — Py <7 o

Velocity Control Law with Collision Avoidance
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Modified Output Synchronization Assumption iefl...n}
» Communication Graph is fixed ,undirected and connected
« ¢t are positive definite

Theorem : Flocking
The control law achieve attitude synchronization =) Flocking
while avoiding collision
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Flocking Algorithm in Fujita lab.

I nteraction-based research

Consider the Whole Flock research

Other Model research

* Summary and Future Works
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Setting Xi| _ gdueu| %~ [relative position
ieV={...nk agent £ Xy Yoi ~ Yo in X,
Py =[x yulpostion| Y 5%, Y N
.- atitudo Y Y , ] i
=, world frame 3, / ;
=, : robot i’sframe < X z ;egwgw . .
Assumption: Symmetrical attraction ., 3 - rotation matrix
1 -10 0] :
graph laplacian
= Lt 2-1o
0 -1 2 -1
0 0 -1 1 )
———— Symmetric
2 -1 0 -1] G
W, :agent i’ s neighbor,
-1 2 -1 0 i
» =, 5, agent reaching arrow
-1 0 -1 2] toagenti
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Kinematics of Agents v’ : body velocity
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Pu =€V Kinematics sx wll<a
Flocking Algorithm  stabilization vector 5=l v
s oy v I[>a
SRR
b =Z¢u R T ) +Z§“ M v e
Vyi jeM Yi dyl DW jev Yi ‘[)S, Yi ]r‘ Yi
cohesion” separation

dignment  [a5 o5] =e®*[d,, d,,]: formation vectorin %,
b2 ot] =eb[p,, D,,]: stabilization vector in X

- e [ co calD2] [D27]
stabilization vector'sdetail | -5 [=-| ¥ [+ X 7je e T8 -] X LieV
D Vi D Db
n b jeN Y b
keep stability with formation vector imbalance

Stability and Formation controllability
« Stahility of position and stabilization vector is
independent of formation vector

« Formation is controllable by the formation vector
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Formation Setting Independent of neighbor
Relative position vector {Z*}:P‘”}D” },k:lz ,,,,, n-1

Xk wj
=8, o o b] @=ls by o O]
B =Xa T Xz et Xs By = Yo + Yoz oot Yo
\Px=[¢x1 bo - B ¢?x]r=[<bx &x]r!\yyz[%l B o Do) &y]r=[¢y &y](

. .. Ae RO
Formation Decision pe Rl

{dﬂ{A O}FX}{WX} d,=[d, d, .. d,J
o, | [0 Aj®, | |Pd,| d=[d, d, .. df
Formation Control
using d, =—P"(PP")"Ad, +hy, v =[L 1 ... JeR
d,=—P"(PP")" A , +hy, Mh,: arbitrary scalars
in distributed Flocking Algorithm with only local information
[, o,] convergeto desired formation [o,, @,
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Summary and Comments

Flocking Algorithm
Similar Flocking Algorithm to Igarashi[1] et al.
Stabilization vector and Collision Avoidance isdifferent point
Considering | mbal ance between Formation vector

Formation Decision
Formation is apart from stabilization
Formation vector correspond to desired formation from formula
Check availability of formation (distributed or not)
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Background

Flocking Algorithm in Fujita lab.

I nteraction-based research

Consider the Whole Flock research

Other Model research

Summary and Future Works
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Setting v f
ieV:={L...,n}: agent =, world frame },
p. € R positionin X, £,: formation frame
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m: mass
R: rotation matrix X relativeto X,

Formation position and attitude

Kinetic Energy of al agents

Ko =15 mlp, [’ M =3 m: total mass
2T Zmp‘m = .
=) K Z%MH%H“%ZMHY%HZ pwc:'f”T: center of massin X,
™ Py =P~ P, position relative to center in
ZW
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Jacobi coordinates

one of Y me) 1 1 )
Jacobicoordinatespma/ﬁ,[pc(,m —_ “],—= ——+——,i=12...,n-1

2™

- ~

~~~~~~

Relative displacement between (i+1)th agent and the center of
mass of the sub-cluster of first i agents
Jacobi coordinates are not unique
There exists an orthogonal matrix h between any two Jacobi coordinates
[p\i/l Paz p&v(nfl)J= [pv?/l Piz - pv?/(n—l)Jh' he O(n-1)
Kinetic Energy of all agents using Jacobi coordinates

j— 1 R
K=o Mbu+5 212l
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shape coordinates
shape coordinates s' = s' (0., Puar--s Pugny) 1 =L 2.-..,30-6

5/ (R0 RPuzr-++ Roun))= 5/ (Pua: Puzs--- Pugoy ) VRE SO3)
the orientation of this formation with the same shape in X, andin

z f
=)
same shape

=Roi(s) R: rotation matrix fromin X, toin I,
s=[¢ & .. ] pi Jacobi coordinatesin X
which only depend on shape coordinates

Q=RRI(s Z(Hp. [1aa=pt(or )) ’1Zp."xap‘ G “AT'A*Jngls)" gls)‘

Kinetic Energy of all agents using shape coordlnates
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K™ =%MHpWCHZ+%(Q+AS)TI(Q+ AS)+%STGS
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Lagrange equation for formationsin Z

Lagrangian L(p,,p,)=K"(p,)-U(p,) " V(p.): potential energy
_ P.=[Pu P - PuoylpPOStiONIN
Lagrange equations before coordinate transformation %,

M By = Uy —;Tu.ie v u,:control forcesin

Lagrange equation for formations usi ngmshape coordfnates
Lagrangian using shape ooordi nate
L(pm, RS, Pocr R,s):iM | pwcHz +2(Q+A(8)3) 1 (Q+ Als)s)+= Logs-u (Pucr RS, Puc)
o 2 2
L agrange equations using shape coordinates

U,e,Ug,Ug: control for
formation position M pwc:—afu +U, U control forcesto .
d U formation
formation orientation — Q+A(s $))=-Qx1(Q+Als)$)- R’laT:{Jrug
formation shape f(Gs)+A(s)T d 1@+ As) o Eap, I
-ATIA, +Z
os' os*
:7[8—@ = —G} $,9) ——+u
2| 0s 2 o ==
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Energy function
Vi :*Hs s+ 9+ As)) 1@+ A(S)S)Jr%STGS
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s desired shape

Shape Control Law
attitude control ~ u, =-kQ
shape control U, = aa%—(s— $)-s
shape control input need only shape information if ~-=0
orientation control input need formation rotation vel o tyinZ,, Q
to estimate Q, need sensing fixed object

=) not only relative information

Theorem
Suppose the potential U isrigid motion invariant ,
by using Shape Control Law , shape s’is
locally asymptotically stabilized
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Summary and Comments
Factor of Whole
Position , Attitude and Shape
Control Law
Input to position, attitude and shape individually
Total energy function objective
Total energy convergesto 0
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Flocking Algorithm in Fujita lab.

I nteraction-based research

Consider the Whole Flock research

Other Model research
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Physarum
Physarum can solve several kinds of problem
graph theoretical problem
optimization problem

System emulating Physarum
A system composed of particles, which move and modified based
upon particle transformation that contains the rel ationship between
parts and the whole =) emulate the network formed by Physarum

cannot move
e

Preserve cohesion property
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Scale-free sub-domain
Proportion of the correlated domain against flock body size is constant

[T Bt

Boidg[2] Physarum
Either cohesion or Two type bodies (parts and whole)
scale-free property Both cohesion and scale-free property
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Summary
Necessity of Scale-free sub-domain property
Scale-free sub-domain property is added to Boidg[2]
but boids can have either cohesion or scale-free property
Other Model

Physarum model can have both cohesion and scale-free property a

Outline

Background
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Flocking Algorithm in Fujita lab.

Micro-oriented research

Macro-oriented research

Other approach

Summary and Future Works

Tokyoinsituteot Temology _amm




Summary and Future Works
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Previous Works in Fujita Lab.

Output Synchronization

Boids like Flocking
Diffigoenhpproach

Decide Formation

in Interaction Control Law

or in Using Input to Whole Flock

Other Flocking Algorithm

Include Scale-free sub-domain property
Formation Decision or Flocking

To introduce bird flock algorithm to real multi-agent system

need Scale-free sub-domain property

Flocking Objective

K eep both cohesion and scale-free property

How to achieve? &) Adding another term to

Boidslike Flocking Algorithm E

Reference
Tokyo Ingtitute of Technology

[1] Y. Igarashi, T. Hatanaka, M. Fujita, M. W. Spong, “ Passivity-
based Output Synchronization and Flocking Algorithm in SE(3),”
Proc. of the 47th |EEE Conference on Decision and Control, pp.
1024-1029, 2008.

[2] C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed
Behavioral Model,” Computer Graphics, val. 21, no. 4, 1987.

[3] H. Yamaguchi, “A Cooperative Hunting Behavior by Mobile-
Robot Troops,” The International Journal of Robotics Research,
Vol. 18, No. 9, pp. 931-940, 1999.

[4] H. Yamaguchi, T. Arai, G. Beni, “A Distributed Control Scheme
for Multiple Robotic Vehicles to Make Group Formations,”
Robotics and Autonomous Systems, Val. 36, No. 4, pp. 125-147, 2001.

Tokyoinsituteot Temology _amm@

Reference
Tokyo Institute of Technology

[5] F. Zhang, M. Goldgeier and P. S. Krishnaprasad, “ Control of
Small Formations Using Shape Coordinates,”

Proc. of the |EEE International Conference on Robotics &
Automation, Vol. 2, pp. 2510-2515, 2003.

[6] F. Zhang, “ Cooperative Shape Control of Particle Formations,”
Proc. of the 46th IEEE Conference on Decision and Control, pp.
2516-2521, 2007.

[71 F. Zhang, “Geometric Cooperative Control of Particle
Formations,” |EEE Trans. on Aoutomatic Control, Vol. 55, No. 3, pp.
800-803, 2010.

[8] &=, “ —FBEED B AN OB ESNDEL AT L, VAT LFIEHTE
|PRIE AT L HE1EER, vol. 54, no. 12, pp. 443-449, 2010.
[9] Y. P. Gunji, T. Shirakawa, T. Niizato, M. Y amachiyo and |. Tani,
“An adaptive and robust biological network based on the vacant-

particle transportation model,” Journal of Theoretical Biology, 272,
pp. 187-200, 2011.

Reference
Tokyo Institute of Technology

[10] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems:
Algorithm and Theory,” |EEE Trans. on Aoutomatic Controal, VVol. 51,
No. 3, pp. 401-420, 2006.

Tokyoinsituteot Temology _amm@




