Sensor Localization and Target

Estimation in Visual Sensor Networks

$|\star|$

Takayuki Nishi
FL11－8－3
$8^{\text {th }}$ ，June， 2011
－Survey and Problem Settings
Presented in the FL seminar on May $11^{\text {th }}$
－First Trial and Evaluation of Proposed Method
Would like to finish by June
－Simulation（Experimental Verification）
Would like to finish by the middle presentation on July $25^{\text {th }}$

Introduction

Visual Sensor Networks
A network consisting of spatially distributed smart cameras

Application

－Environmental monitoring
－Surveillance

The information of the location of the sensor is needed
Network Localization
Determining the relative poses of each sensor in sensor networks

Outline
－Introduction
－Problem Settings
－First Trial in a Simple Model
－Analysis of the Trial

困

Introduction

Localization in Camera Networks［5］
Distributed estimation of the pose of cameras
－Use feature points to get the neighboring pose
－Apply only in static scene
－Nonsimultaneous measure and estimation Objective of my Research
－Use an object to get the relative pose of the camera
－Not only determine the relative pose of each sensor but also estimate the pose of the object
［5］R．Tron and R．Vidal，＂Distributed Image－based 3－D Localization of Camera Sensor Networks，＂Proc．of the 48th IEEE Conference on Decision and Control，pp．901－908， 2009.

Definition of Localization

Definition of Localization

Consider a visual sensor network. Let the world frame be the camera1 frame. The network is localized when the relative poses of the camera $\boldsymbol{g}_{\mathbf{i}}$ for all $i \in\{2, \cdots, N\}$ are uniquely determined.
(Inspired by Bullo et al. [4] and Vidal et al. [5])
Motivation of Localization Problem

- Estimates $\bar{g}_{i o}$ are taken from their own camera frame
- Estimates $\bar{g}_{i o}$ (measurements) are corrupted by noise
- Object pose needs to be
 expressed in a common frame (world frame)
- Object pose relative to world frame $g_{w o}$ must be unique Tolyo Institutu of Technolegy 8

Objective

Optimization Problem

$$
\min _{\tilde{g}_{i o}, \bar{g}_{w i}} \Psi=\min _{\tilde{g}_{i o}, \bar{g}_{w i}} \sum_{i \in V}\left(\varphi\left(\tilde{g}_{i o}^{-1} \bar{g}_{i o}\right)+\sum_{j \in \mathcal{N}_{i}} \varphi\left(\tilde{g}_{w o i}^{-1} \tilde{g}_{w o j}\right)\right)
$$

$$
\text { such that } \tilde{g}_{w 1}=(I, 0) \text { and } \tilde{g}_{w 2} \text { are known }
$$

Procedure of minimization: Gradient method

$$
\begin{array}{ll}
\dot{\tilde{g}}_{i o}=-\operatorname{grad}_{\tilde{g}_{i o}} \Psi & i \in V \\
\dot{\tilde{g}}_{w i}=-\operatorname{grad}_{\tilde{g}_{w i}} \Psi & i \in V^{\prime} \quad V^{\prime}=\{3,4, \cdots, N\}
\end{array}
$$

Division into Position and Orientation Parts Position

$$
\min _{\tilde{p}_{i o}, \tilde{p}_{w i}} \varphi=\min _{\tilde{p}_{i o}, \bar{p}_{w i}} \frac{1}{2} \sum_{i \in V}\left\|\tilde{p}_{i o}-\bar{p}_{i o}+\tilde{p}_{w o i}-\tilde{p}_{w o j}\right\|^{2}
$$

Orientation

$$
\min _{\tilde{R}_{i o}, \tilde{R}_{w i}} \Phi=\min _{\tilde{R}_{i o}, \tilde{R}_{w i}} \frac{1}{2} \sum_{i \in V}\left\|\tilde{R}_{i o}-\bar{R}_{i o}+\tilde{R}_{w o i}-\tilde{R}_{w o j}\right\|_{F}^{2}
$$

Decision variables: $\tilde{g}_{w i} i \in V^{\prime} \quad V^{\prime}=\{3,4, \cdots, N\}$

Consider 3 cameras and estimate only orientation Cost function

$$
\begin{aligned}
\Phi & =\frac{1}{2}\left\|\tilde{R}_{1 o}-\bar{R}_{1 o}\right\|_{F}^{2}+\frac{1}{2}\left\|\tilde{R}_{2 o}-\bar{R}_{2 o}\right\|_{F}^{2}+\frac{1}{2}\left\|\tilde{R}_{3 o}-\bar{R}_{3 o}\right\|_{F}^{2} \quad \text { Graph settings } \\
& +\frac{1}{2}\left\|\tilde{R}_{w o 1}-\tilde{R}_{w o 2}\right\|_{F}^{2}+\frac{1}{2}\left\|\tilde{R}_{w o 2}-\tilde{R}_{w o 3}\right\|_{F}^{2}+\frac{1}{2}\left\|\tilde{R}_{w o 3}-\tilde{R}_{w o 1}\right\|_{F}^{2}
\end{aligned}
$$

$R_{w o i}=R_{w i} R_{i o}$: Orientation of the object estimated by camera i
Gradient of the cost function

$$
\begin{aligned}
& \operatorname{grad}_{\tilde{R}_{10}} \Phi=-\tilde{R}_{1 o}\left(\operatorname{sk}\left(\tilde{R}_{1 o}^{T} \bar{R}_{1 o}\right)+\operatorname{sk}\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}+\operatorname{sk}\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)\right)\right. \\
& \operatorname{grad}_{\tilde{R}_{w 3}} \Phi=-\tilde{R}_{w 3}\left(\operatorname{sk}\left(\tilde{R}_{w 3}^{T} \tilde{R}_{w o 1} \tilde{R}_{3 o}^{T}\right)+\operatorname{sk}\left(\tilde{R}_{w 3}^{T} \tilde{R}_{w o 2} \tilde{R}_{3 o}^{T}\right)\right)
\end{aligned}
$$

Update the estimates (discrete)

$$
\begin{array}{lc}
\tilde{R}_{i o}(l+1)=\exp _{\tilde{R}_{i o}(l)}\left(-\epsilon \operatorname{grad}_{\tilde{R}_{i o}(l)} \Phi\right) & \tilde{R}_{i o}(l) \text { : Estimates at iteration } l \\
\tilde{R}_{w i}(l+1)=\exp _{\tilde{R}_{w i}(l)}\left(-\epsilon \operatorname{grad}_{\tilde{R}_{w i}(l)} \Phi\right) & \varepsilon \text { : Step size }
\end{array}
$$

Object \& 3 Cameras : Stationary Exponential expression

$$
R_{1 o}=e^{\hat{\xi} \theta_{1 \circ}} \quad \xi \sin \left(\theta_{1 o}\right)=\left(\operatorname{sk}\left(R_{1 o}\right)\right)^{\vee}
$$

True orientation
$\xi \sin \left(\theta_{1 o}\right)=\left\lceil\begin{array}{lll}0.2222 & 0.4364 & 0.7640\end{array}\right]^{T}$
$\xi \sin \left(\theta_{2 o}\right)=\left\lceil\begin{array}{lll}-0.6572 & 0.2739 & 0.4755\end{array}\right.$
$\xi \sin \left(\theta_{3 o}\right)=\left[\begin{array}{lll}-0.6869 & 0.0336 & 0.4872\end{array}\right]^{T}$
$\xi \sin \left(\theta_{w 3}\right)=\left[\begin{array}{lll}0.6257 & 0.6957 & 0.0975\end{array}\right]$
Fixed orientation

$$
R_{w 1}=I_{3} \quad \xi \sin \left(\theta_{w 2}\right)=\left[\begin{array}{lll}
0.7355 & 0.5092 & 0.0785
\end{array}\right]^{T}
$$

$$
R_{w 1} R_{1 o}=R_{w 2} R_{2 o}=R_{w 3} R_{3 c}
$$

Estimated orientation $R_{1 o}, R_{2 o}, R_{3 o}$
Step size :0.001
True orientation + Random constant noise
(Gaussian with mean 0 variance 0.0001)

Plot of orientation R_{10}
—— New estimates \tilde{R}_{10}
— Estimated by VMO (measurements) $R{1 n}$

- True orientation $R_{1 o}$

| 囵
Outline
- Introduction
- Problem Settings
- First Trial in Simple Models
- Analysis of the Trial

Regard cost function as Lyapunov candidate function

Lyapunov function considering only position (Orientation fixed)

$$
\begin{aligned}
V_{p} & =\frac{1}{2} \sum_{i \in V}\left\|\tilde{p}_{i o}-\bar{p}_{i o}\right\|^{2}+\frac{1}{2} \sum_{i \in V} \sum_{j \in \mathcal{N}_{i}}\left\|\tilde{p}_{w o i}-\tilde{p}_{w o j}\right\|^{2} \\
p_{w o i} & =R_{w i} p_{i o}+p_{w i}
\end{aligned}
$$

Time derivative of the Lyapunov function

$$
\begin{array}{rlr}
\dot{V}_{p}= & \sum_{i \in V}\left(\tilde{p}_{i o}-\bar{p}_{i o}\right)^{T} \dot{\tilde{p}}_{i o}+\sum_{i \in V} \sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)^{T} \tilde{R}_{w i} \dot{\tilde{p}}_{i o} \\
& +\sum_{i \in V^{\prime}} \sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)^{T} \dot{\tilde{p}}_{w i} \quad V^{\prime}=\{3,4, \cdots, N\}
\end{array}
$$

Gradient method

$$
\begin{array}{ll}
\dot{\tilde{p}}_{i o}=-\frac{\partial V_{p}}{\partial \tilde{p}_{i o}} & \frac{\partial V_{p}}{\partial \tilde{p}_{i o}}=\tilde{p}_{i o}-\bar{p}_{i o}+\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{i o}+\tilde{R}_{w i}^{T}\left(\tilde{p}_{w i}-\tilde{R}_{w j} \tilde{p}_{j o}-\tilde{p}_{w j}\right)\right. \\
\dot{\tilde{p}}_{w i}=-\frac{\partial V_{p}}{\partial \tilde{p}_{w i}} & \frac{\partial V_{p}}{\partial \tilde{p}_{w i}}=\sum_{i \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)
\end{array}
$$

$$
\begin{array}{rlr}
\dot{V}_{p}= & -\sum_{i \in V}\left(\tilde{p}_{i o}^{T}-\bar{p}_{i o}^{T}+\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)^{T} \tilde{R}_{w i}\right)\left(\tilde{p}_{i o}-\bar{p}_{i o}+\sum_{j \in \mathcal{N}_{i}} \tilde{R}_{w i}^{T}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)\right) \\
& -\sum_{i \in V^{\prime}} \sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)^{T}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right) \\
= & -\sum_{i \in V} P_{i}^{T} P_{i}-\sum_{i \in V^{\prime}} Q_{i}^{T} Q_{i} & P_{i}=\tilde{p}_{i o}-\bar{p}_{i o}+\sum_{j \in \mathcal{N}_{i}} \tilde{R}_{w i}^{T}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right) \\
\leq & 0 & Q_{i}=\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)
\end{array}
$$

Straightforward interpretation

$$
\begin{aligned}
\dot{V}_{p} & =\sum_{i \in V} \frac{\partial V_{p}}{\partial \tilde{p}_{i o}} \dot{\tilde{p}}_{i o}+\sum_{i \in V^{\prime}} \frac{\partial V_{p}}{\partial \tilde{p}_{w i}} \dot{\tilde{p}}_{w i} \\
& =-\sum_{i \in V}\left(\frac{\partial V_{p}}{\partial \tilde{p}_{i o}}\right)^{2}-\sum_{i \in V^{\prime}}\left(\frac{\partial V_{p}}{\partial \tilde{p}_{w i}}\right)^{2} \\
& \leq 0
\end{aligned}
$$

| \mid |

Lyapunov Method (Position)

Analysis in the case $\dot{V}_{p}=0 \quad P_{i}=\tilde{p}_{i o}-\bar{p}_{i o}+\sum_{j \in \mathcal{N}_{i}} \tilde{R}_{w i}^{T}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)$

$$
\dot{V}_{p}=\underline{\left.\sum_{i \in V} P_{i}^{T} P_{i}+\sum_{i \in V^{\prime}} Q_{i}^{T} Q_{i}=0 \quad Q_{i}=\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right), ~()^{2}\right)}
$$

(1) (2)

$i \in V$	$i \in V^{\prime} \quad V^{\prime}=\{3,4, \cdots, N\}$
$\tilde{p}_{i o}-\bar{p}_{i o}+\sum_{j \in \mathcal{N}_{i}} \tilde{R}_{w i}^{T}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)=0 \quad$ (1),	$\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)=0 \quad$ (2),

Since $V^{\prime} \subset V$, substitute
$\tilde{R}_{w i}\left(\tilde{p}_{i o}-\bar{p}_{i o}\right)+\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)=0 \quad \begin{gathered}\text { (2)' to (1) } \\ \tilde{p}_{i o}=\bar{p}_{i o}\end{gathered}$
$\xlongequal{\wedge} \tilde{R}_{w i}\left(\tilde{p}_{i o}-\bar{p}_{i o}\right)+\tilde{p}_{w i}-\tilde{p}_{w i}+\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)=0$
$\Leftrightarrow \tilde{p}_{w o i}-\bar{p}_{w o i}+\sum_{j \in \mathcal{N}_{i}}\left(\tilde{p}_{w o i}-\tilde{p}_{w o j}\right)=0 \quad \begin{aligned} \tilde{p}_{w o i} & =\tilde{R}_{w i} \tilde{p}_{i o}+\tilde{p}_{w i} \\ & \bar{p}_{w o i}\end{aligned}=\tilde{R}_{w i} \bar{p}_{i o}+\tilde{p}_{w i}$
Tokyo Institute of Technology

|

Lyapunov Method (Position)

[^0]
Conclusion

Conclusion

- Problem Settings

Setting the cost function

- Orientation Simulation in a Simple Model

The cost function is minimized
Question about what is the meaning of the converge value

- Analysis of the position cost function

Converge values are weighted average of the estimates

Future Works

- Analysis of the orientation cost function
- Analytical simulations
[1] S. Thrun, W. Burgard and D. Fox, "Probabilistic Robotics," The MIT Press, 2006.
[2] N. Trwmy, X. S. Zhou, K. X. Zhou and S. I. Roumeliotis, "3D Relative Pose Estimation from Distance-only Measurements," Proc. of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1071-1078, 2007.
[3] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson and P. N. Belhumeur, "A Theory of Network Localization," IEEE Transactions on Mobile Computing, Vol. 5, No. 12, pp. 1663-1678, 2006.
[4] G. Piovan, I. Shames, B. Fidan, F. Bullo and B. D. O. Anderson, "On Frame and Orientation Localization for Relative Sensing Networks," Automatica, 2011. (submitted)
[5] R. Tron and R. Vidal, "Distributed Image-based 3-D Localization of Camera Sensor Networks," Proc. of the 48th IEEE Conference on Decision and Control, pp. 901-908, 2009.
[6] R. Tron, R. Vidal and A. Terzis, "Distributed Pose Averaging in Camera Sensor Networks via Consensus on SE(3)," Proc. of the International Conference on Distributed Smart Cameras, 2008.
Tokyo Institute of Tecchnology
[7] T. Hatanaka, T. Nishi and M. Fujita, "Passivity-based Cooperative Estimation Algorithm for Networked Visual Motion Observers," Proc. of the SICE Annual Conference 2011, 2011. (submitted)
[8] M. Fujita, H. Kawai and M. W. Spong, "Passivity-based Dynamic Visual Feedback Control for Three Dimensional Target Tracking: Stability and L2-gain Performance Analysis," IEEE Transactions on Control Systems Technology, Vol.15, No. 1, pp. 40-52, 2007.
[9] P. A. Absil, R. Mahony and R. Sepulchre, "Optimization Algorithms on Matrix Manifolds," Princeton Press, 2008.
[10] Y. Igarashi, T. Hatanaka, M. Fujita and M. W. Spong, "Passivity-based Attitude Synchronization in SE(3)," IEEE Transactions on Control Systems Technology, Vol. 17, No. 5, pp.1119-1134, 2009.
[11] T. Hatanaka and M. Fujita, "Passivity-based Cooperative Estimation of 3D Target Motion for Visual Sensor Networks: Analysis on Averaging Performance," Proc. of the 2011 American Control Conference, 2011. (to be presented)

因

Definition of Localization

Definition of localization

Problem 6 (Frame localizability) [4]

Given a relative sensing network with reference node1.

are uniquely determined by the relative measurements

Appendix

Definition 1 (Localized network) [5]

A network is said to be localized if there is a set of relative transformations such that, when the reference frame of the first node is fixed to \boldsymbol{n}, the other absolute poses \boldsymbol{g} are uniquely determined.
For any path l from node 1 to node i, we have $\boldsymbol{s e g}_{\boldsymbol{s}}=\boldsymbol{g}_{\boldsymbol{g}}$

Calculation of the Gradient
Directional derivative

$$
\begin{equation*}
D \bar{\phi}(R)[Z]=\lim _{t \rightarrow 0} \frac{\bar{\phi}(R+t Z)-\bar{\phi}(R)}{t}=-\operatorname{trace}\left(Z^{T} Q\right) \tag{3}
\end{equation*}
$$

From (2) and (3)

$$
\begin{aligned}
& \operatorname{grad}_{R} \bar{\phi}(R)=-Q \\
& \operatorname{grad}_{R} \phi(R)=P_{R} \operatorname{grad}_{R} \bar{\phi}(R)=P_{R}(-Q)=-R \operatorname{sk}\left(R^{T} Q\right)
\end{aligned}
$$

Simulation: Only Position

$$
\begin{aligned}
& \text { True position } \\
& \begin{aligned}
p_{1 o} & =\left[\begin{array}{lll}
0.9572 & 0.4854 & 1.3003
\end{array}\right]^{T} \\
p_{2 o} & =\left[\begin{array}{lll}
0.7809 & 0.6624 & 0.8927
\end{array}\right]^{T} \\
p_{3 o} & =\left[\begin{array}{lll}
-0.1147 & 0.2007 & 1.3340
\end{array}\right]^{T} \\
p_{w 3} & =\left[\begin{array}{lll}
0.4074 & 0.4529 & 0.0635
\end{array}\right]^{T}
\end{aligned}
\end{aligned}
$$

Fixed position and orientation

$$
\begin{aligned}
& g_{w 1}=\left(I_{3}, 0\right) \\
& p_{w 2}=\left[\begin{array}{lll}
0.4567 & 0.3162 & 0.0488
\end{array}\right]^{T} \\
& \xi \sin \left(\theta_{w 2}\right)=\left[\begin{array}{lll}
0.2222 & 0.4364 & 0.7640
\end{array}\right]^{T} \\
& \xi \sin \left(\theta_{w 3}\right)=\left[\begin{array}{lll}
0.6874 & 0.1123 & 0.6914
\end{array}\right]^{T} \\
& p_{w o 1}=p_{w o 2}=p_{w o 3}
\end{aligned} R_{w o 1}=R_{w o 2}=R_{w o 3} .
$$

| 1

Lyapunov Method (Orientation)
Lyapunov function considering only orientation

$$
\begin{aligned}
& V_{R}=\frac{1}{2} \sum_{i \in V}\left\|\tilde{R}_{i o}-\bar{R}_{i o}\right\|_{F}^{2}+\frac{1}{2} \sum_{i \in V} \sum_{j \in \mathcal{N}_{i}}\left\|\tilde{R}_{w o i}-\tilde{R}_{w o j}\right\|_{F}^{2} \\
& =\sum_{i \in V} \phi\left(\tilde{R}_{i o}^{T} \bar{R}_{i o}\right)+\sum_{i \in V} \sum_{j \in \mathcal{N}_{i}} \phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right) \\
& \phi\left(R^{T} Q\right)=\operatorname{tr}\left(I-R^{T} Q\right)=\frac{1}{2}\|R-Q\|_{F}^{2} \quad \quad \quad R_{w o i}=R_{w i} R_{i o} \\
& \text { Time derivative of the Lyapunov function } \\
& V^{\prime}=\{3,4, \cdots, N\}
\end{aligned}
$$

$\dot{V}_{R}=-\sum_{i \in V} \operatorname{tr}\left(\dot{\tilde{R}}_{i o}^{T} \bar{R}_{i o}+\sum_{j \in \mathcal{N}_{i}} \dot{\tilde{R}}_{i o}^{T} \tilde{R}_{w i}^{T} \tilde{R}_{w o j}\right)-\sum_{i \in V^{\prime}} \sum_{j \in \mathcal{N}_{i}} \operatorname{tr}\left(\tilde{R}_{i o}^{T} \dot{\tilde{R}}_{w i}^{T} \tilde{R}_{w o j}\right)$ Gradient method

$$
\begin{aligned}
& \tilde{\tilde{R}}_{i o}=-\operatorname{grad}_{\tilde{R}_{i o}} V_{R} \\
& \operatorname{grad}_{\tilde{R}_{i o}} V_{R}=-\tilde{R}_{i o} \mathrm{sk}\left(\tilde{R}_{i o}^{T} \bar{R}_{i o}\right)-\tilde{R}_{i o} \sum_{j \in \mathcal{N}_{i}} \operatorname{sk}\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right) \\
& \operatorname{grad}_{\tilde{R}_{w i}} V_{R}=-\tilde{R}_{w i} \sum_{j \in N_{i}} \operatorname{sk}\left(\tilde{R}_{w i}^{T} \tilde{R}_{w o i} \tilde{R}_{i o}^{T}\right)
\end{aligned}
$$

Lyapunov Method (Orientation)

$\dot{V}_{R} \leq-\sum_{i \in V}\left\{\underline{\phi\left(\tilde{R}_{i o}^{T} \bar{R}_{i o}\right)}-\sum_{j \in \mathcal{N}_{i}}\left(\phi \underline{\left(\tilde{R}_{i o}^{T} \bar{R}_{i o}\right)}+\phi \underline{\phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)}-2 \phi \underline{\underline{\left.\left(\bar{R}_{w o i}^{T} \tilde{R}_{w o j}\right)\right)}}\right.\right.$ $\left.-\sum_{j \in \mathcal{N}_{i}} \sum_{k \in \mathcal{N}_{i}}\left(\phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)-\phi\left(\tilde{R}_{w o j}^{T} \tilde{R}_{w o k}\right)\right)\right\}$
$-\sum_{i \in V^{\prime}} \sum_{j \in \mathcal{N}_{i}} \sum_{k \in \mathcal{N}_{i}} \underline{\left(\phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)-\phi\left(\tilde{R}_{w o j}^{T} \tilde{R}_{w o k}\right)\right)}$
$-\sum_{i \in V}\left\{\lambda_{\min }\left(\operatorname{sym}\left(\tilde{R}_{i o}^{T} \bar{R}_{i o}\right)\right) \underline{\left(\phi\left(\tilde{R}_{i o}^{T} \bar{R}_{i o}\right)\right.}+\sum_{j \in \mathcal{N}_{i}} \phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)\right)$
$-\sum_{j \in \mathcal{N}_{i}} \lambda_{\left.\left.\min \left(\operatorname{sym}\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)\right) \underline{\left(\phi\left(\tilde{R}_{i o}^{T} \bar{R}_{i o}\right)\right.}+\sum_{\underline{k \in \mathcal{N}_{i}}} \phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o k}\right)\right)\right\}}$
$-\sum_{i \in V^{\prime}} \sum_{j \in \mathcal{N}_{i}} \sum_{k \in \mathcal{N}_{i}} \frac{\lambda_{\min }\left(\operatorname{sym}\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)\right) \phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o k}\right)}{}$

Consideration

Converge to the set??

Time Derivative of Orientation Lyapunov Function

Simple model (Ex.1)
$\dot{V}_{R} \leq-\sum_{i \in V}\left(3 \phi\left(\bar{R}_{i o}^{T} \tilde{R}_{i o}\right)+2 \sum_{j \in \mathcal{N}_{i}} \phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)-\phi\left(\tilde{R}_{i o}^{T} \tilde{R}_{w i}^{T} \tilde{R}_{w o j}\right)\right)$

- $2\left(\phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)+\phi\left(\tilde{R}_{w o 2}^{T} \tilde{R}_{w o 3}\right)-\phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)\right)$
$-\sum_{i \in V} \lambda_{\min }\left(\operatorname{sym}\left(\bar{R}_{i o}^{T} \tilde{R}_{i o}\right)\right)\left(\phi\left(\bar{R}_{i o}^{T} \tilde{R}_{i o}\right)+\sum_{j \in \mathbb{N}_{i}} \phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o j}\right)\right)$

$-\lambda_{\min }\left(\operatorname{sym}\left(\bar{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)\right)\left(\phi\left(\bar{R}_{1 o}^{T} \tilde{R}_{1 o}\right)+\phi\left(\bar{R}_{2 o}^{T} \tilde{R}_{2 o}\right)+\phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)+3 \phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)+2 \phi\left(\tilde{R}_{w o 2}^{T} \tilde{R}_{w o 3}\right)\right.$
- $\lambda_{\text {min }}\left(\operatorname{sym}\left(\tilde{R}_{w o 2}^{T} \tilde{R}_{w o 3}\right)\right)\left(\phi\left(\bar{R}_{20}^{T} \tilde{R}_{2 o}\right)+\phi\left(\tilde{R}_{30}^{T} \tilde{R}_{30}\right)+\phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)+2 \phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)+3 \phi\left(\tilde{R}_{w o 2}^{T} \tilde{R}_{w o 3}\right)\right.$
- $\lambda_{m i n}\left(\operatorname{sym}\left(\bar{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)\right)\left(\phi\left(\bar{R}_{10}^{T} \tilde{R}_{1 o}\right)+\phi\left(\bar{R}_{3 o}^{T} \tilde{R}_{3 o}\right)+2 \phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)+\phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)+\phi\left(\tilde{R}_{w o p}^{T} \tilde{R}_{w o 3}\right)\right)$

Simple model (Ex.2)
$\dot{V}_{R} \leq-\sum_{i \in \mathrm{~V}}\left(2 \phi\left(\bar{R}_{i o}^{T} \tilde{R}_{i o}\right)+2 \sum_{i \in N} \phi\left(\tilde{R}_{w o i}^{T} \tilde{R}_{w o i j}\right)-\phi\left(\bar{R}_{i o}^{T} \tilde{R}_{w i}^{T} \tilde{R}_{w o j}\right)\right)$
$\left(3 \phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)+3 \phi\left(\tilde{R}_{w o 2}^{T} \tilde{R}_{w o 3}\right)-4 \phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)\right)$ $\left.\sum_{i \in V} \lambda_{\min }\left(\operatorname{sym}\left(\vec{R}_{i o}^{T} \tilde{R}_{i o}\right)\right)\left(\phi\left(\tilde{R}_{i o}^{T} \tilde{R}_{i o}\right)+\sum_{j \in \mathcal{N}_{i}} \phi \tilde{\hat{R}}_{w o i}^{T} \tilde{R}_{w o j}\right)\right)$
$\lambda_{m i n}\left(\operatorname{sym}\left(\tilde{W}_{w o 1}^{T} \tilde{R}_{w o 2}\right)\right)\left(\phi\left(\tilde{R}_{1 o}^{T} \tilde{R}_{10}\right)+\phi\left(\bar{R}_{2 o}^{T} \tilde{R}_{20}\right)+2 \phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)+\phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)+2 \phi\left(\tilde{R}_{w o 2}^{T} \tilde{R}_{w o 3}\right)\right)$ - $\lambda_{m i n}\left(\operatorname{sym}\left(\tilde{R}_{w o 2}^{T} \tilde{R}_{w o 3}\right)\right)\left(\phi\left(\tilde{R}_{20}^{T} \tilde{R}_{2 o}\right)+\phi\left(\tilde{R}_{30}^{T} \tilde{R}_{3 o}\right)+2 \phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 2}\right)+\phi\left(\tilde{R}_{w o 1}^{T} \tilde{R}_{w o 3}\right)+2 \phi\left(\tilde{(}_{w o 2}^{T} \tilde{R}_{w o 3}\right)\right.$

[^0]: Tokjo Institute of Tectmology Checked by the simulation (Appendix)

