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• Survey and Problem Settings

• First Trial and Evaluation of Proposed Method

• Simulation  (Experimental Verification) 

Annual Schedule of my Research

Would like to finish by June

Presented in the FL seminar on May 11th

Would like to finish by the middle presentation 
on July  25th
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Introduction

Visual Sensor Networks
A network consisting of spatially distributed smart cameras 

Application
• Environmental monitoring • Surveillance

The information of the location of the sensor is needed

Network Localization
Determining the relative poses of each sensor in sensor networks
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Introduction

Localization in Camera Networks [5]
Distributed estimation of the pose of cameras

Objective of my Research

• Not only determine the relative pose of each sensor but also 
estimate the pose of the object 

• Use feature points to get the neighboring 
pose

• Apply only  in static scene

• Nonsimultaneous measure and estimation 

• Use an object to get the relative pose of 
the camera 

[5] R. Tron and R. Vidal, “Distributed Image-based 3-D Localization of Camera Sensor 
Networks,” Proc. of the 48th IEEE Conference on Decision and Control, pp. 901-908, 2009.

Object
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• Introduction

• Problem Settings

• First Trial in a Simple Model

• Analysis of the Trial

Outline
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Preliminaries

Consider a Visual Sensor Network with Objects
),( EVG =Communication graph

},,1{ NV L=Set of cameras:

Neighbor set:

Undirected graph

j can get i’s informationEji ∈),(Edge:

Camera1
Camera2

Camera3Camera4

Pose of camera i :

Pose of object relative to camera i:

Pose Representation

Position:
Orientation:

Camera i’s 
frame i∑

Object 
frame

Camera j’s 
frame j∑

o∑World 
frame w∑

Object

Relative pose of the camera i and j:

Pose of object :
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Preliminaries

Estimated pose:

Visual Measurements

Relative Rigid Body Motion (RRBM) 

Rigid Body Motion
: body velocity
: wedge""∧

RRBM

Rigid Body 
Motion

Position of feature points relative to camera frame

Estimate       from     by Visual Motion Observer [8]

Perspective projection

Position of feature points relative to object frame

:focal length

Camera Frame

Image Plane
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Definition of Localization

Consider a visual sensor network. Let the world frame be the 
camera1 frame. The network is localized when the relative poses 
of the camera      for all                   are uniquely determined.},,2{ Ni L∈

Definition of Localization 

Motivation of Localization Problem
• Estimates      are taken from their 

own camera frame

• Object pose needs to be 
expressed in a common frame (world frame)

Object

Camera1
= World frame

Camera2 Camera3

Camera4

• Object pose relative to world frame        must be unique

• Estimates      (measurements) are 
corrupted by noise

(Inspired by Bullo et al. [4] and Vidal et al. [5])
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Objective

Objective

Euclidean distance:

Determine the poses of the camera       and object relative to 
the camera      which are ….      

Cost Function

• As close as the estimates
• Satisfy the uniqueness of the object pose

: Pose of the object estimated by camera i

Fix variables (known pose):
Decision variables:

To avoid the solution will be trivial

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

10

Problem Settings

Optimization Problem

Procedure of minimization: Gradient method

Division into Position and Orientation Parts
Position

such that                      and        are known

Orientation
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• Introduction

• Problem Settings

• First Trial in a Simple Model

• Analysis of the Trial

Outline
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Trial with Simple Models

Consider 3 cameras and estimate only orientation
Cost function

Update the estimates (discrete)

ε : Step size
: Estimates at iteration l

Gradient of the cost function

1

2

3

Graph settings 

: Orientation of the object estimated by camera i
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Simulation Settings

Object & 3 Cameras : Stationary

True orientation

Exponential expression

True orientation + Random constant noise
(Gaussian with mean 0 variance 0.0001)

Fixed orientation
0
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Simulation Results
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Simulation Results
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Simulation Results

New estimates
True orientation

Plot of orientation
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Discussion & Problems

Distance between true and measured orientation

Distance between true and calculated orientation

1. What are the physical meanings of the estimates? 

2. The pose of cameras change when the object moves
New estimates seem to reduce the effectiveness of the noise
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Cameras: Stationary

Object :Move
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• Introduction

• Problem Settings

• First Trial in Simple Models

• Analysis of the Trial

Outline
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Lyapunov Method (Position)

Regard cost function as Lyapunov candidate function
Lyapunov function considering only position (Orientation fixed)

Time derivative of the Lyapunov function

Gradient method
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Lyapunov Method (Position)

Straightforward interpretation  
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Lyapunov Method (Position)

Analysis in the case

(2)(1)

(2)’

Since             , substitute 
(2)’ to (1)’

(1)’ (2)’
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Lyapunov Method (Position)

Let            be the element of 

Let },,1{ NV L=

L : Graph Laplacian

Ex.)
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Checked by the simulation (Appendix)
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Lyapunov Method (Position)
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The graph is connected and balanced
Assumption

1

2

3
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+ −

747142
727441
717274

)( 1LI

Ex.)

1

2

3
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+ −

959131
929431
919232

)( 1LI

Not balanced

heuristic

(Inspired by Hatanaka [7] , [11])
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Conclusion

Future Works

Conclusion
• Problem Settings

Setting the cost function

The cost function is minimized
Question about what is the meaning of the converge value

• Orientation Simulation in a Simple Model 

• Analysis of the position cost function
Converge values are weighted average of the estimates 

• Analysis of the orientation cost function

• Analytical simulations
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Appendix
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Definition of Localization

Definition 1 (Localized network) [5]
A network is said to be localized if there is a set of relative 
transformations       such that, when the reference frame of the first 
node is fixed to     , the other absolute poses    are uniquely 
determined.
For any path l from node 1 to node i, we have 

Definition of localization 

Problem 6 (Frame localizability) [4]  
Given a relative sensing network with reference node1.
The reference frame transformation             for all          
are uniquely determined by the relative measurements

},,2{ ni L∈

:i’s orientation relative to node1 :i’s position
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Calculation of the Gradient

Consider

SO(3) is submanifold of  

Define

Projection: 

Tangent space: 

(1)

(2)

: Inner product
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Calculation of the Gradient

From (2) and (3)

Directional derivative

(3)
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Simulation : Moving Object

Simulation Settings
3 Cameras : Stationary
Object :Move
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Simulation Settings: Only Position

True position

Fixed position and orientation
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Simulation: Only Position
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Lyapunov Method (Orientation)

Time derivative of the Lyapunov function

Gradient method

Lyapunov function considering only orientation
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Lyapunov Method (Orientation)

From Lemma4 in [11]
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Lyapunov Method (Orientation)

if
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Lyapunov Method (Orientation)

if

Consideration

Converge to the set??

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

38

Time Derivative of Orientation Lyapunov Function

Simple model (Ex.1)  

1
2

3

Graph settings 

1
2

3

Graph settings 

Simple model (Ex.2)  


