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Outline of My Research in This Semester

• Survey of Synchronization
- Kuramoto oscillator          
- Synchronization on SO(3) (SE(3))
- Pursuit and Evasion

etc…
Search new research fields or problem settings

: This Seminar
: The Next Seminar
: The 3rd Seminar

• Visual Feedback Pose Synchronization
- Weaken the assumption where visibility structures are leader-follower type
- Search new procedures for proof

Aim to submit a paper to the 51st CDC and ECC

• Study
- F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems: Modeling,    

Analysis, and Design for Simple Mechanical Control Systems, Springer, 2004.
- M. Vidyasagar, Nonlinear Systems Analysis, Second Edition, SIAM, 2002

• Collaborative Work
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Introduction

observed in Biological, Chemical and Social Systems
Collective Synchronization Phenomena

Networks of pacemaker cells in the heart
Circadian rhythms in the blain or living organisms
Synchronously flashing fireflies
Crickets chirping in unison   etc…

Physics and Engineering
Arrays of lasers
Microwave oscillators
Computer clock synchronization
Superconducting Josephson junctions    etc…

Synchronization
Multiple periodic processes with different natural frequencies come to acquire 
a common natural frequency as a result of their mutual or one-sided interaction

These numerous examples originally motivate researchers 
to study collective synchronization phenomena

Flashing Fireflies

Josephson Junctions
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・ Survey of Kuramoto Oscillators

・ Introduction
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・ Conclusion

・ Introduction to Visual Feedback Attitude 
Synchronization with Velocity Observers

- Outline of My Research in This Semester
- Synchronization

- History of Kuramoto Oscillator [1-4]
- Ali Jadbabaie et al. [5]
- Nikhil Chopra et al. [6-8]
- R. Sepulchre et al. [9,10]
- F. Dorfler et al. [11,12]

- Problem Settings
- Technical Difficulties

: Next Seminar
×
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History of Kuramoto Oscillators [1]

N. Wiener [2]
• first studied collective synchronization
• recognized its ubiquity in the natural world

Unfortunately, his mathematical approach based on Fourier integrals has turned out 
to be a dead end

(motivated by the generation of alpha rhythms in the blain)

: sensitivity function

A. T. Winfree [3]
• formulated the problem in terms of a huge population of interacting limit-cycle 
oscillators
• recognized that simplifications would occur if the coupling were weak and the 
oscillators nearly identical 

(motivated by circadian rhythms in living organisms)

In simplifications, each oscillator is coupled to the collective rhythm generated by 
the whole population, analogous to a mean field approximation in physics

: phase of oscillator
: natural frequency of
: phase-dependent
influence on all the others

Winfee’s Model
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History of Kuramoto Oscillators [1]

Y. Kuramoto [4]
• significantly extended Winfree’s model 
• recognized that the mean-field case should be the most tractable

The long-term dynamics are given by the following phase equations corresponding 
to the simplest possible case of equally weighted, all-to-all, purely sinusoidal
couplingKuramoto Model : coupling gain

ensures that the model 
is well defined as 

is the average phase

Order Parameter

To visualize the dynamics of the phases, it is convenient to imagine a swarm of 
points running around the unit circle in the complex plane

radius         measures the phase coherence  
(used by R. Sepulchre et al. [11,12])

: the population acts like a giant oscillator
: no macroscopic rhythm is produced
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History of Kuramoto Oscillators [1]

Kuramoto Model Order Parameter

Kuramoto Model

the phase     is pulled toward the mean phase

Simulations (how does       evolve?)
When              for some            ,        grows exponentially

mutually synchronized; generating a collective oscillation
When              , the oscillators act as if uncoupled;
the phases become distributed around the circle
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History of Kuramoto Oscillators [1]

when               ,  the population splits into two groups;
i) The oscillators near the center of the frequency 
distribution lock together at the mean frequency     
and co-rotate with the average phase
ii) Those in the tails run near their natural frequencies 
and drift relative to the cluster

By simulations, the author fond that

Partially Synchronized

With the further increase in      , more and more oscillators are recruited 
into the synchronized cluster, and        grows

Main Results

: average 

Ex.)
If               , then

Sketch of Proof for appropriate

at

: probability density of 
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Kuramoto Model Main Results [4]
If               , then

Some Important Questions Associated with Kuramoto Oscillators

Questions

• How about finite     ?
• There is no analysis which shows that the oscillators in the Kuramoto model  

synchronize exponentially
Nobody has even touched the problems of global stability and convergence [1] (2000)

Definition
Hereafter,

The oscillators are said to synchronize if

i.e. the phase differences given by                             become 
constant asymptotically

Control and Graph Theoretic Methods [5-12]
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Graph Laplacian

Preliminary: Incidence Matrix

: degree matrix
: adjacency matrix

Ex.)

Incidence Matrix 
for Oriented Bidirectional Graph 
with     Vertices and     Edges

if the edge is incoming to vertex 
if the edge is outcoming from vertex 
otherwise

Ex.)

Oriented Bidirectional Graph
Kuramoto Model

-th
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A. Jadbabaie et al. [5]

Identical Coupled Oscillators

Unperturbed Kuramoto Model

Theorem 1’ [5]
Consider the unperturbed Kuramoto model. Then, for any given    and any 
value of            , the vector        is an asymptotically stable equilibrium solution, 
i.e., the synchronized state is globally asymptotically stable over            .

Sketch of Proof
Lyapunov Function:

Lasalle’s Invariance Principle

: weighted graph laplacian

Kuramoto Model

Theorem 1:
The phase differences converge to an even multiple of 

i.e. the oscillators synchronize

Arbitrary connected graph
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A. Jadbabaie et al. [5]

Non-identical Coupled Oscillators Kuramoto Model
Necessary Condition

Order Parameter:

The critical value of the coupling is determined by the value of for which 
the fixed point disappears.

: fixed point equation

More technical calculations (cannot understand) …

Necessary Condition
If               , then a totally synchronized state 
does not exist

Main Results

-norm:
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N. Chopra et al. [6,7]

Necessary Condition Kuramoto Model

Synchronization

By calculating                                                  ,                                 

(1)

The critical gain coupling gain required for onset of synchronization in (1) is given by

[5]

Note:               is a necessary condition below which synchronization cannot occur 
[7]
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N. Chopra et al. [6,7]

Sufficient Condition

Additional Assumption:

Theorem 4.1 [6]
Consider the systems dynamics described by (1). Let all initial phase 
differences be contained in the compact set     . Then, there exists a 
coupling gain                 such that                         .

Positively Invariant Set

Sketch of Proof
Lyapunov Function:

If                         ,      is negative at

Thus,             cannot leave :     is Positively Invariant Set
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N. Chopra et al. [6,7]

Theorem 4.2 [6]
If                  , then all the oscillators synchronize 
i.e.                                                            .

Sketch of Proof Positive Function:

(Theorem 4.1)
Lasalle’s Invariance Principle

Corollary 4.3 [6]
If                  , then                                      .

Sketch of Proof

Theorem 5.1 [6]
If                  , then the oscillators synchronize exponentially at a rate no 
worse that                     .

Sketch of Proof (following [13]) : disagreement vector

Graph Laplacian
All-to-all:

Main Results
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N. Chopra et al. [8]

Transformation:

Passivity-based Approach [8]
Case 1:

Kuramoto Model

: passive with storage function

From Theorem 7 [8], Assumption:

Case 2: All oscillators have different natural frequencies

Derivative of the Kuramoto model:
choose

: passive with storage function

If                  , then     is positively invariant set. So
regard as time variant positive gainFrom Theorem 3 [8],

i.e. : Synchronization
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R. Sepulchre et al. [9,10]

Autonomous Underwater Vehicles (AUVs)

Order Parameter Phase Potential

or

The potential     reaches its unique minimum when (balanced) 
and its unique maximum when all phases are identical 
(synchronization). All other critical points of     are isolated and saddle 
points of    .

Theorem 1 [9]

Sketch of Proof

balanced

synchronization

almost global
: bal.
: sync.
: unstable

(2)

gradient of
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R. Sepulchre et al. [9,10]

Since                   , the convergence analysis is unchanged

Graph Laplacian:
:   -th row of 

Circular Formation

Spacing Control (Circular Formation)
Center of the Circle:

Lyapunov Function:

(3)

Consider the particle model (2) with the spacing control (3). All solutions 
converge to a relative equilibrium defined by a circular formation of radius     .

Theorem 2 [9]

Sketch of Proof Lasalle’s Invariance Principle
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R. Sepulchre et al. [9,10]

Consider the particle model (2). The following control law enforces convergence 
of all solutions to the set of relative equilibria defined by circularformations with 
a phase arrangement in the critical set of    .

Theorem 3 [9]: Synchronized and Balanced Circular Formations 
Main Results

Sketch of Proof
Lyapunov Function:

Lasalle Almost: bal. or synch. (sign of      )
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F. Dorfler et al. [11,12]

Smart Grid
The envisioned future power grid is expected to be even more 
complex and will rely increasingly on renewable energy sources, 
such as wind and solar power, which cause stochastic disturbances.

The future power grid is more prone to instabilities, 
which can ultimately lead to power blackouts.

Transient Stability
The ability of a power system to remain in synchronism when subjected to 
large transient disturbances such as faults on transmission elements or loss 
of load, generation, or system components.

More general synchronization problem

: admittance

Mathematical Model of a Power Network

For each generator    ,

: internal voltage
: active power output
: mechanical power input
: damping constant
: 50 or 60 Hz
: inertia
: rotor angle
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F. Dorfler et al. [11,12]

Mathematical Model of a Power Network
Natural Frequency:

Inertia over damping ratio much 
smaller than the net frequency:

Non-uniform Kuramoto Model Kuramoto Model
(4)

Consider the non-uniform Kuramoto model (4). Assume that 
Theorem 3.2 [11]

Then, for every                          , the frequencies      synchronize 
exponentially to some frequency                                 .

means

Sketch of Proof based on contraction theory (no details)

Main Results

(5)
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F. Dorfler et al. [11,12]

From Non-uniform to Classic Non-uniform Kuramoto Model

Kuramoto Model
For the classic Kuramoto oscillators, the sufficient 
condition (5) of Theorem 3.2 specializes to

Remark 5.4 [11]

: Sufficient Condition

Theorem 3.2 [11]

In other words, if                      , then the oscillators 
synchronize                                .

(6)

The authors claims that the condition (6) is also 
necessary condition since the bound (6) is close to 
the necessary conditions derived in [5-7].

[5]

[6,7]

Probably, the rigorous proof of Remark 5.4 is shown 
in [12], which is going to be presented in the 2011 
American Control Conference.

Sufficient Condition in [6,7]
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Summary

[2,3]: studied collective synchronization phenomena motivated
by numerous examples in biological system, etc…

[4]: extended synchronization models in [3] and proposed
the Kuramoto model, but said that the proof wasn’t easy

elegantly 
summarized in [1]

Refer to [13] and references therein

Graph theory also stimulates researchers to investigate the problem of 
coordinated motion of multiple autonomous agents (Cooperative Control)

Methods of Proofs
Most of works use nonnegaive phase potential whose derivative is nonpositive 
and investigate the equilibrium points. In analysis, the graph Laplacian plays a 
significant role.

infiniteGraph Theory
[5-9]: analyzed the necessary or sufficient conditions for synchronization 

[10-12]: considered applications by using the Kuramoto model

finite

Summary Kuramoto Model:
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Conclusions and Future Works

like a Kuramoto model (Identical Coupled Oscillators)

Attitude Synchronization
2D 3D

Communication Graph directed, weighted, strongly connected, (switching)
Lyapunov Function Candidate

2D 3D

Kuramoto Model in 3D

Assumption: The other equilibrium points are unstable ?
[9,10]

The Next Survey: Synchronization on SO(3) (6/10)
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