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Introduction (Cooperative Control)

Cooperative Control
Several autonomous agents connected 
with a network seek to collectively
accomplish a global objective such as 
Example: ・ Sensor Coverage

・ Consensus
・ Resource Allocation

Fig.2 Resource AllocationGame Theoretic Approach
・ Agents are “self-
interested”

Non-Cooperative Game

Fig.1 Coverage

Advantages
・ Robustness to failures and environmental disturbances
・ Reduction of communication requirements
・ Scalability  ・ Adaptability in real time

・ The solution to the problem = the equilibrium of the game 

● Use Potential Game

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

3

Introduction (Objective)

Previous Work
Propose new learning algorithm for Potential Game (PG),
Payoff-based Inhomogeneous Partially Irrational Play (PIPIP) [1]

[1] 後藤, “ポテンシャルゲーム理論的協調制御における学習アルゴリズムの提案,” 東京工業大学修士論文, 2011.

Objective of this work
・ To verify the validity of the theoretic result [1] by way of 
experiment
・ To consider the applicability of PIPIP to other scenarios
・ To consider the applicability to an environmental change

Motivation
・ Not to make Experimental Studies for PIPIP
( Experimental Method of coverage or consensus problem )
・ Not to consider the robustness to environmental disturbances 
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Outline

• Introduction

• Essence of Potential Game
- What’s Potential Game?
- Learning Algorithms ( RSAP / PIPIP )
- Problem of PIPIP

• Experimental Environment Settings
- Movement Algorithm
- Field Components

• Simulation / Experiment

• Summary and Future Work
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1. A set of players (agents)

3. The collection of objective function

Definition of Game Theory (Strategic game)

2. The collection of action set

Strategic Game is represented by 

(                               )

:     ’s action set
:     ’ s action

:     ’ s objective function
Each agent chooses an action       to maximize

[Definition] (Pure Nash Equilibrium)
a pure Nash Equilibrium is an action profile              s.t. 
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Potential Function (global objective function)
: maximal objective as a group is achieved

Potential Game

Features of Potential Game
・ Nash Equilibrium (NE) exists
・ Design which leads to NE is easy
1. policies of objective function
2. Learning Algorithm

Ex. Potential
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Each agent chooses an action       to maximize
[Definition] (Potential Game)
The strategic game                         is a potential game if

s.t.

NEmaximize Optimal NE
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field

obstacles

Restrictive Spatial Adaptive Play (RSAP)

Step1 Randomly choose one player
Step2 selects one trial action

: restricted action set

Step3 choose its action         :      or
Choose trial action

Choose stay (previous) action
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Time-Inhomogeneous

Payoff-based Inhomogeneous Partially Irrational Play (PIPIP)[1]

I.C.

Step1 Update exploration rate :

(randomly):
: ,

:

case2 otherwise 

Step2 Action Selection
case1

probability selection
randomly, uniformly

an irrational decision

probability selection
randomly, uniformly

Step3 Executes the action
Step4 Compute                             . Go to Step1
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Problem of PIPIP

case2 otherwise 

Oh, NO!!In this case, this action does not exist.
( Drawback of PIPIP )

Unconsiderable case?
Or Not to satisfy Assumption ?

Reversibility and Feasibility are satisfied, 
but for                                                       ?

probability selection
randomly, uniformly
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Revised PIPIP

case2 otherwise 

Step2 Action Selection
case1

probability selection
randomly, uniformly

an irrational decision

probability selection randomly, uniformly
(i)

an irrational decision
probability selection

(ii)
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Concept of Movement Algorithm

Approach

・ Intuitive understanding
・ Movement Algorithm is hard
( especially, when multi-agent moves automatically)

・ Intuitive understanding is hard?
(to consider machine ability, sensor ability ... )
・ Movement Algorithm is easy
・ “Nearest Agent” moves

Approach 2 is better in the Coverage Problem
In the Consensus Problem … ?

1. (agent on PG     )    ( machine   )

2. (agent on PG     )    ( machine   )
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Movement Algorithm of Approach 2

I.C.
Step1

get: and set machine numbers
get next state: (*)

Step4 Each agent computes “route step” ( Dijkstra’s algorithm )

Step6
Step7

Each agent execute the actions
Go to Step1

Step2 For all combination : (     patterns )

(                                )
(i) Correspond Machine    to agent on PG     :

trial number :

Step3 s.t.

(ii) Compute the Estimate Function      :

Step5 Collision Avoidance
(A) A head-on collision : change       . Back to Step2.
(B) other collision : one machine waits several steps
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Field Components (Coverage)

max 9 blocks

max 
6 blocks

If several agents stay at the same 
position, they are put at neighbors

(*) To 
decide I.C. All agent are set  not to be repeated:

Step1 Set the position where an agent exists.
Not to be repeated : Go to Step3. Otherwise : Go to Step2.

Step2

Step3 Give the next state

Search the neighbor place where an agent is not set
[Condition] ・ Reachable from the place where the agent exists

・ movable in the shortest time from the current position
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Experimental Environment

Pose Synchronization Law to the Imaginary Pose[4]
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Coverage : Settings

Area

Reward
Sensing Area

(Gaussian Distribution)
Radius to 1

Agents

Obstacle

Initial Position
4

Simulation All agents : (2,2)
Experiment (1,1), (1,2), (2,1), (2,2)

Skips (Experiment) 10 steps
( to take a lot of time )  100steps⇒12minutes, at least 1000steps …

Potential Function

Utility Function
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Plain Field

RSAP PIPIP Optimal NE

Time / Potential Step / Potential
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Obstacle

RSAP PIPIP Optimal NE

Time / Potential Step / Potential
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Summary and Future Work

Summary

Future Works

・ Compose Experimental System for PG
・ Verify the theoretic result [1] by way of experiment

・ Verify the robustness to environmental change
・ Tackle Coverage Problem with camera
・ Compare RSAP and PIPIP in the Attitude Coordination

・ Compare RSAP and PIPIP in the  Consensus problem
Next Seminar

1. Experiment-Based Study

2. Simulation-Based Study
・ Compose Simulator ( Simulation→Movie )
・ Apply to a large system
( variables : field, agents, sensing area, reward etc. )
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Details of Future Work

・ Verify the robustness to environmental 
change

1. Experiment-Based Study

2. Simulation-Based Study
・ Apply to a large system

・ Tackle Coverage Problem with 
camera

?
?

?
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APPENDIX
・ The Law of Local Controller

・ RSAP v.s. PIPIP

・ Global Function
・ Distributed Inhomogeneous Synchronous Learning (DISL)

・ Field Components
・ Dijkstra’s 
Algorithm
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The Law of Local Controller

Pose Synchronization Law[4]

[4] 伊吹, “車輪型移動ロボットを用いた位置姿勢同期制御に関する研究,” 東京工業大学学士論文, 2008.

Pose Synchronization Law to the Imaginary Pose

: reference pose to lead PG movement algorithm
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Global Function

Coverage Consensus

Fig.1 Coverage Fig.2 Consensus

Potential Function Potential Function

Utility Function Utility Function

Settings Settings
Reward
Sensing Area

Communication
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Distributed Inhomogeneous Synchronous Learning (DISL)

I.C.

Step1 Each agent updates exploration rate as

Step2 Action Selection

randomly select and compute

Time-Inhomogeneous

:
: ,
:

Compute
: number of agents
: minimum step of any two different action

probability selection
randomly, uniformly

Step3 Each agent executes the action
Step4 Compute                             . Go to Step1

Problem This does not imply that the group achieves 
optimal Nash equilibria PIPIP

Convergence Nash Equilibrium
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RSAP v.s. PIPIP

RSAP PIPIP

Information Virtual Payoff-based Payoff-based
Memory Finite Finite

Equilibrium Optimal NE
(high probability) (probability 1)

Movable agent One agent All agents
Optimal NE

Exploration

Convergence
Exploration rate

Parameter
faster
lower

faster
higher
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Field Components

Coverage Consensus

max 9 blocks

max 4 blocks

max 
6 blocks

max 
3 blocks

If several agents stay at the same 
position, they are put at neighbors

Stay Position
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Dijkstra’s Algorithm

Settings Network
: Connected, No-direction graph

: Start position
: length

Step While
(i) For all sides                 to connect     and

If          is updated, set
(ii) For              s.t. 

If                  , set
Output

Dijkstra’s Algorithm can lead the minimum root


