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Introduction (Cooperative Control)
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Cooperative Control -
Severa autonomous agents connected (.a .J » ®
with anetwork seek to collectively 8
accomplish aglobal objective such as Fig.1 Coverage

Example: - Sensor Coverage
= Consensus
» Resource Allocation

Game Theoretic Approach Fig.2 Resource Allocation
- Agents are “self- Non-Cooperative Game
mnienessotlition to the problem = the equilibrium of the game

Advantages
- Robustnessto failures and environmental disturbances
- Reduction of communication requirements
- Scalability - Adaptability in real time

@ Use Potential Game
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Introduction (Objective)
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Previous Work
Propose new learning algorithm for Potential Game (PG),
Payoff-based Inhomogeneous Partialy Irrational Play (PIPIP) [1]

Motivation
* Not to make Experimental Studiesfor PIPIP

( Experimental Method of coverage or consensus problem)
+ Not to consider the robustness to environmental disturbances

Objective of thiswork

+ To verify the validity of the theoretic result [1] by way of
experiment

+ To consider the applicability of PIPIP to other scenarios

- To consider the applicability to an environmental change
[1] #%&, "RFoov LT — LBROBRAFECEF2EETILTIVXLORE RRIERFETRK, 2011,
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Outline
Tokyo Institute of Technology

» Essence of Potential Game
- What's Potential Game?
- Learning Algorithms ( RSAP/ PIPIP)
- Problem of PIPIP

» Experimental Environment Settings
- Movement Algorithm
- Field Components

» Simulation / Experiment
e Summary and Future Work
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Definition of Game Theory (Strategic game)
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1. A set of players (agents) |V = {1,---,N} (N > 2)
(P={P1, -, Pn})
2. Thecollection of actionset A, a
A, P;’saction set
a;(€ A;): P’ saction

LA = -Al X o X .AN
a = (aj,a_;)
a_i=(a1,a2, "+, @;_1,a;41," ", an)
3. The collection of objective function U = {Uq,---,Un}
U, :P;’ sobjective function U, A= R
Each agent chooses an action @; to maximize U;
Strategic Gameisrepresentedby ' = (V, A, U)
[Definition] (Pure Nash Equilibrium) —————
apure Nash Equilibrium is an action profilea* € A st.
vieVy Ui(al,ar;)= Inajz U;(a;, a*;)

i€
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Potential Game
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Potential Function (global objective function) ¢ : A — R
\gb :maximal == objective asagroup is achieved
Each agent chooses an action @&; to maximize U;
[Definition] (Potential Game)
The strategic game " = (V, A, U) isapotential game if
dé st. Vi€V Va_; € A_; Va,a € A,
Ui(a],a—;) — Ui(al,a_;) = ¢(a], a_;) — ¢(aj, a_;)

Features of Potential Game Ex. Payoff Potential
+ Nash Equilibrium (NE) exists NE haver2 Payer2
+ Design which leadsto NE iseasy Aloo) I 2
A
1. policies of objective function g \(22/)(/1(2 i \2//0\
i i [on o
2. Learning Algorithm B[ 0D[(44) \E Bl 0 [3)

maximize¢| = ’ Optimal NE ‘(_)7_9 ﬂ




Restrictive Spatial Adaptive Play (RSAP)

Tokyo Institute of Technology

Py Stepl Randomly choose one player P
./ Step2 P; selects one trial action @;
L P ([ ] i; € Ri(n;(t—1)) : restricted action set

P @ Prla;=a]=1/z %= max [R;(a;)

() Ya,; € R;(a; (f—l))\a (t—=1)
Prla; = a;(t—1)] =

Aiait=1)) 1—((Riai(t—1))|-1)/2)

Step3P; chooseits actiona;(t) :a; ora;(t—1)
Choose trial action
Prla(t) = 4] = exp{pU;(a; a_i(t—1))}
Choose stay (previous) action b

Prla;(t) = a;(t—1)] = W

D = exp{AU;(a;. a—;(t—1))} +exp{BUi(a(t—1))} 5
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|| Payoft-based inhomageneous Partially Irrational Play (PIPIP)[1]
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I.C. t=0: , Vi (randomly) Ui(a(0))
t=1": a(l) =a(0), Ui(a(1)) = U;(a(0))

Stepl |t > 2 : Update exploration rate: =(f) = ="M+
Step2 Action Selection o Time-Inhomogeneous
casel Ui(a(t—1)) > Ui(a(t—2))
probability selecuon

(1) E Ri(a;(t)\{ai(t — 1)} randomly, uniformly
1—¢(t) =a;(t—1)
case? otherwise A :=i{a(t—2))—i(alt—1)) k€ (I(“\;lé]
probahility selection Ealh—
&(l) b € Ri(a;(t)\{a:(t — 1), ai(t — 2)} randomly, uniformly
(1= () (ke()>) aff = a;(t—1) <@ anirrational decision
(L—e()(1 - ke(t)™) a‘p = a;(1-2)

Step3  Executes the action |«
Step4 Compute Ui (%), Ri(a") . Go to Stepl

Tokyo Institute of Technology

Problem of PIPIP
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case? otherwise
probability selectlon
=) P e Ri(ai(t)\{as(t — 1), a;(t — 2)} randomly, uniformly

e ~

)
Py
@)
Ri(ai) a;(t—2) lag(t — 1) al?
In this case, this action does not exist. Oh, NO!!

( Drawback of PIPIP)
=) Unconsiderable case?
Or Not to satisfy Assumption ?
Reversibility and Feasibility are satisfied,
but for |«

i€ Rifa(t)\{ast — 1), it —2)} ?
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Revised PIPIP
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Step2 Action Selection a7
casel Ui(a(t—1)) > Ui(a(l—2))
probability selection
£(1) al™ € Ri(a;(t — 1))\ {ai(t = 1)} randomly, uniformly
1—e(t) tp =a;(t—1)
case2 otherwise A, := I/;{aft — 2)) = U;{a(t = 1)) ‘k € (Wi 1%]
(1) al € Rifai(t = 1)\{ai(t = 1), ai(t = 2)} £ 0
probability selection randomly, uniformly
£(t) al” € Rifa;(t — 1)\{ait = 1), a;(t = 2)
(1= () ke(N™) @f = as{t=1) (- anirrational decision
(L= )1 = ke()®) o = ai(t-2)
(i) a'" € Rifai(t — ))\fai(t = 1),ai(t = 2)} =0
probability selection
ke(t)™ a? = a;(t—1) <@ anirrational decision

1—ke@®)®  a’ = a;(t— z)
Toolnsitutet Technlogy _mmm

Outline
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» Experimental Environment Settings
- Movement Algorithm
- Field Components

» Simulation / Experiment
e Summary and Future Work
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Concept of Movement Algorithm
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Approach

1. (agent on PG P;)= ( machineli )
+ Intuitive understanding

* Movement Algorithm is hard A
(‘especially, when multi-agent moves automatically) D

Jt )

»
>

2. (agent on PG P;) # ( machineli )

* Intuitive understanding is hard?

(to consider machine ability, sensor ability ...)
* Movement Algorithm is easy

* “Nearest Agent” moves

Ve
U»

Approach 2 is better in the Coverage Problem
In the Consensus Problem ... ?
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Movement Algorithm of Approach 2
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I.C. t=0: get a(0).a{0) and set machine numbers p:(0) =i, Vi€V
Stepl ¢ > 1 : get next state a(r) (*)
Step2 For al combination : (V! patterns)

(i) Correspond Machinei toagenton PG j :

trial number : pi(t) =4, i,5 €V (pi(t) # p; (1), i,5 € V)
(i) Compute the Estimate Functionl/ :
J= Z [l ey (#) = appe—ry (=1} |1
eV

Step3 p(t) = plt) st. minJ
Step4 Each agent computes “route step” ( Dijkstra s algorithm)
Step5 Collision Avoidance

(A) A head-on collision : changer(t} . Back to Step2.

(B) other callision : one machine waits several steps
Step6  Each agent execute the actions
Step7 Goto Stepl
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Field Components (Coverage)
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If several agents stay at the same
position, they are put at neighbors

el8

. . 3 ?grocks
®

—_— A
max 9 blocks X/
*)To aft)

desid7 =71 : All agent are set not to be repeated a(0)(= a(0))
Stepl Set the position where an agent exists.
Not to be repeated : Go to Step3. Otherwise : Go to Step2.
Step2 Search the neighbor place where an agent is not set
[Condition] - Reachable from the place where the agent exists
- movable in the shortest time from the current position

Step3 Give the next state (1)
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Experimental Environment
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Computer

Camera
Image Data -
o) =_ (Image Processing) R
(Potential Game)
Visual C++ 2
(moving model)

dSPACE Simulink (Controller)

Visual €+ | (output Controlled Value)

—

Control Input

K-

Wireless Device
©Omni-directional Mobile Robots (xBes)
(on Field)

Pose Synchronization Law to the Imaginary Pose[4]

vii kpi 0 0 cosly;  sinfy; 0
v =] 0 ky O —sinfly; cosfy; 0
w? 0 0 ke

Tari — Twi
Ywri — Ywi
w, 0 0 1 Sin(Buri — Bui)
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Outline
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» Simulation / Experiment
e Summary and Future Work
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Coverage : Settings
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Area Q=1L 9}={L---6} Potential Function
Sensing Area D(«) Radiusto 1 ba) = Zi) w,
Reward (Gaussian Distribution) =g
v —T)2 4 (g — 5)? Utility Function
m(q):exp{,(q )+ (2, =9 } U@(ai‘z/_i): X
Obstacle 9€D(a))NQ nq(a)
10 ={(z,y)]z+y =8, 3<z<6}

Agents 4

Initial Position y
Simulation  All agents: (2,2)
Experiment (1,1), (1,2), (2,2), (2,2)

Skips (Experiment) 10 steps X
(totakealot of time) 100steps=>12minutes, at least 1000steps ...
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Plain Field
PIPIP Optimal NE 1
E &
—fi=1 gﬁe
L] L] ‘inrm 200 .m. Siep 800 1000
Step / Potential

z 5

alue of Petential Function

Mo m om

® 1 2

7 3 4 5 8 2
Time [min] Step
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T8 8 200 300 400 SO0 600 700 BOC




Obstacle E’
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PIPIP Optimal NE 1

Potential

Pt b B @

Time/ Potential Step / Potentlal

a0

3

=

WValue of Potential Functich
Mm@ @
Value of Potential Funct

Mo ® m

% 2 0 %

4 &
Time [miin]
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Outline
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e Summary and Future Work
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Summary and Future Work
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Summary

+ Compose Experimental System for PG
- Verify the theoretic result [1] by way of experiment

+ Compare RSAP and PIPIP in the Consensus problem i

Future Works ﬂ Next Seminar

1. Experiment-Based Study

+ Verify the robustness to environmental change

+ Tackle Coverage Problem with camera

» Compare RSAP and PIPIP in the Attitude Coordination
2. Simulation-Based Study

+ Compose Simulator ( Simulation—Movie)

= Apply to alarge system

(variables: field, agents, sensing area, reward etc. )

Togoindiuteof Temology w

Details of Future Work
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1. Experiment-Based Study
+ Verify the robustness to environmental \

\ N ‘ *("ce"? (,\% .J (nu GJ

J

2. Simulation-Based Study
&e* @, ‘“‘. ®. :4. -Applytoalargesystem

J J J
+ Tackle Coverage Problem with

m“q@@f o ’
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APPENDIX

- The Law of Local Controller

- Global Function

+ Distributed Inhomogeneous Synchronous Learning (DISL)
* RSAPv.s. PIPIP

- Field Components

- Dijkstra's

Algorithm
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The Law of Local Controller
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Pose Synchronization Law[4]

vl kpi 0 0 cosfyi  sinfy; 0 Tws — Twi
vg,; = 0 kpi O Z —sinfly; cosfy; 0 Ywi — Yws
w? 0 0 kai | jen: 0 0 1 sin(fu; — Ouwi)

i

Pose Synchronization Law to the Imaginary Pose

vl kpi 0 0 cosfly;  sinfy; 0 Zwri — Lwi
v =1 0 ko 0 —sinfy;i cosfy; 0 Yuri — Ywi

s

0 0k 0 0 1 Sin (i — Ous)
[ @wri G Ours | - reference pose to lead PG movement algorithm

wl

[4] B, " BHREBHOARY AN UBERSRAFEET MR, RRIEXFFLHRK, 2008
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Global Function
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Coverage Consensus
Potential Fungti(qn Potential Functic‘)‘n H
_ %“f[/Vq o) = — a; — aj
‘(/J(u) _Zg Z e é(a) Piejppzejv D
Utility Function Utility Function
U(ai,az) = Y "Wﬁ Ui(ai,azi) == Y llai —aj]]
A PEN,

g€D(a;)NQ

Settings Settings
Reward Wala) Communication N
Sensing Area D(a:)

s O™ [ e

N

Fig.1 Coverage Fig.2 Consensus a

H Distributed Inhomogeneous Synchronous Learning (DISL)
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I.C. t=0:a(0), Vi randomly select and compute U:(a(0))
t=1:0a(1)=0a(0), Ui(a(l)) = Us(a(0))
Stepl ¢ > 2 : Each agent updates exploration rate as () = (=N P+1)
Compute a:(7(t)) Time-Inhomogeneous
IV : number of agents
D; - minimum step of any two different action D= e D;
(1) = { t—1 if Ui(a(t—1)) > Ui(a(t — 2))
T t—2 otherwise Convergence Nash Equilibrium
Step2 Action Selection a”
probability selection
&(t) al € Ry(ai(t — D))\ {as(m(1))} randomly, uniformly
L—c(t)  af =ai(r(t))
Step3 Each agent executes the action o
Step4 Compute Ui (ai”, a%), Ri(af?) . Go to Stepl

Problem This does not imply that the group achieves

optimal Nash equilibria =  PIPIP E

RSAPv.s. PIPIP
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RSAP PIPIP
Memory Finite Finite
Information  Virtual Payoff-based Payoff-based
Ri(ai(t — 1)) Ri(ai(t — 1))
vl vt st

A FOY [ IAICERNE =l PO
. wir| vl wir|  Uilalt=2)4+—>

Exploration Q

Parameter g=0 £ € (0,1/2)

Convergence faster (3 — ) faster (¢ -+ 1/2)
Exploration rate lower (5 — o) higher (= — 1/2)

Movable agent One agent All agents
Equilibrium Optimal NE Optimal NE
(high probability) (probability 1

ujitaLal
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Field Components

Coverage Consensus
max ‘ max
Q A Q 6 blocks 3 blocks
) &
max 9 blocks A Q

p they arep 9 Stay Position

&L
o
Tago nsiied! Temlog w

Dijkstra’ s Algorithm

Settings  Network G=(V,8);s,
G : Connected, No-direction graph
s€eV: Start position
d:&— Ry length
U:={s}, T:=0, u:=s, d*(s) :=0, d*(v) ;=00 (v €V —{s})
Step  While V-1 #0
(i) For all sides{u,v} € ¢ to connect v andv €V =T
d*(v) := min{d*(v), d"(u) + d(u,v)}
If (v) is updated, set F*() = (1 v)
(ii) For{u, vmi) sit. min d"(v)
U :=UU{vmin}, T:=TU{e" (min)}
If V-U#0,set v:=tmin
Output 7 = {e*(v)|v € V — {s}}

Dijkstra’s Algorithm can lead the minimum root a
Tokyo Ingtitute of Technology




