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Overview of Localization

Mobile Robot Localization

Determining the pose of arobot relativeto a
given map of the environment

Knowledge of the location is necessary
. .

« Navigation « Surveillance
* Mapping

Sensors for detect the location
» Computer-vision
+ GPS

* Encoder

» Rangefinder etc.
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Localization Problems
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Consideration
 Pose can usually not sensed directly

* No noise-free sensor
* Dynamic environment
|:> Integrate data to determine the pose
Taxonomy of localization problems
« Local localization (position tracking)
Initial robot pose is known
* Global localization
Initial robot pose is unknown Robot isinitialy placed
« Kidnapped robot problem

During operation, the robot gets teleported .
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Multi-agent localization

Multi-agent localization (cooperation)
Each robot localize itself individually
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Robots can detect each other (Relative location of robots)
Localization in sensor networks (Network localization)
« Not work well in buildings or obstruction
« High cost
Special nodes (beacon) Know position
Relative pose estimation for pair of robots only distance
measurements [2]
Heuristic-based (lack of theoretical foundation)
[2] N. Trwmy, X. S. Zhou, K. X. Zhou and S. I. Roumeliotis, “3D Relative Pose Estimation from

Distance-only Measurements,” Proc. of the 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1071-1078, 2007. n
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GPS

Theory of Network Localization

Theory of network localization [3]
1. What are the condition for unique network localizability?
2. What isthe computational complexity of network localization?

3. What isthe complexity of network localization in typical
network deployment scenarios?

Localization theory in angle-of-arrival sensing [4]
¢ Formulation of frame localizability

 Distributed algorithm for planar orientation
localization
Francesco Bullo
« Conditions for orientation localizability in noiseless
3-D networks

[4] G. Piovan, |. Shames, B. Fidan, F. Bullo and B. D. O. Anderson, “On Frame and Orientation

Localization for Relative Sensing Networks,” Automatica, 2011. (submitted)
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Localization in Camera Networks
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Locadlization in camera networks [5]
Distributed estimation of the poses of the cameras

 Estimated neighboring poses by standard computer
vision techniques

* Minimizing a cost function on SE(3) in adistributed R. Vidal
fashion '

Related work
» Pose Averaging [6], [7]

[5] R. Tronand R. Vidal, “ Distributed Image-based 3-D Localization of Camera Sensor Networks,”
Proc. of the 48th IEEE Conference on Decision and Control, pp. 901-908, 2009.

[6] R. Tron, R. Vidal and A. Terzis, “Distributed Pose Averaging in Camera Sensor Networks via
Consensus on SE(3),” Proc. of the International Conference on Distributed Smart Cameras, 2008.

[7] T. Hatanaka, T. Nishi and M. Fujita, “Passivity-based Cooperative Estimation Algorithm for

Networked Visual Motion Observers,” Proc. of the SICE Annual Conference 2011, 2011. (submitted)
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Comparison of Related Work
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Visual sensor networks
¢ Static object and scene

1
R. Vidal

6 ==

— POSE aVEraging mfm—— L 0Cali Z&ti ON m——

7 |:|:> My work??
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¢ Dynamic Estimation
¢ Simultaneous Estimation & Optimization
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Outline
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 |ntroduction
e Survey of [9]

* Application to our Research
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Preliminaries
Undirected connected graph G=(V,E)
Set of nodes: V={1,---,N} Edge (i, j) e E : j communicate with i

Tokyo Institute of Technology

Pose of each node: ¢; = (R:,T;) € SE(3) Relative Poseigi; = g; ' 0 g
W, W, W

2 n

Path | : sequences of nodes '‘—0—0——@®
I={w,--,w},w eV,(w-w )e Eme{l---,n-1

Relative poseaong apath I: 91 = guw,wa_1 © " © Guwow,
Cycle: Path from node i to itself without repeated nodes

Definition 1 (Localized network) [5]

A network is said to be localized if thereisa set of relative
transformations &y such that, when the reference frame of the first
nodeisfixed to g , the other absolute poses g are uniquely

determined. A
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Method to Get Noisy Estimates
. ) P
Epipolar Constraint
Extract feature points X , X, Image
X, X, homogeneous coordinates
x=[la b 1]
o . X Rx
Vector x,T,,R X, lieinan epipolar plane n
e ! T 21
Xl Tu Ru X1=O !
-
Use more than 8 feature points derive t=—",R
points = dative (7 R

Measurements are corrupted by noise
Unknownscales 4 T=AF

Noisy relativepose  g;; = (Rij, T};)
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Problem Settings

Goal: Find the relative transformationsg; ;
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1. Close asthe relative measurements

2. Sdtisfy the constraints given in Definitionl

@ Minimize the cost function
1 . N d3(91,92) = déo(a) (Ri, Ra) + || Ty — To|?

v=3 PR ACERD) ! @ 1 -
JEN: 5o (Ri, Re) = —5”300(10%(31] Rs)%)

Neighbor set: N; = {j € V|(j,i) € E}

@ Congtraints

For any path | from node 1 to node i,
we have g = g 0 g1, regardless of chosen pth1

11
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Consideration of the Consistent Constraints
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Reparametrize relative pose g;;

Using absolute pose g, g;

Proposition 1 : The following are equivalent 4
1. Thenetwork islocalized 1
2. For any cycle 15w, -, w,,w},w,eV,n>1 B2
The transformation along the cycle isg = (,0) 2

3. Thereexist aset of absolute poses g such that gy =g; " s gy

Compute the absolute posesy; , relative poseg;; will be uniquely
determined @

The consistent constraints will be automatically satisfied .
Fujita Laboratory
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Problem Settings

Rewrite usi ng absolute poses
b = Z dy(9:4:3:3) = 5 LS o gd0)
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JEN JEN
= 2 L d‘qo RIR R1J)+||R1(T T)_/\ufu H )
JEN:
= or({Ri}) + er({Ri} {T3}, {Mi})
Only Rotation All variables
Consider 4=0

A=0 &> T=T, =0 Globa minimum but trivia

A, must be positive |:> Proposed idea: Minimum scale4 > 1
Summary (localization problem)
w{RE T} ] subjectto 421 (i,j)e E
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min
LL N R SE )
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Procedure of Minimization

Toyolnsitutoof Technology
Procedure of minimization (gradient descent)
1. Find aninitial set of rotations by optimizing only ¢
gradg, o = —Ri Y log(R{ RiRY;) + log(R{ RiRix)
€N
Rull+1) = expp, o (—cgrady, ) Ry(1) : Rotation at iteration |
£:Stepsize
Initialization of the Rotations @, has multiple local minima
Set new cost function

Pr=73 Z IB; - RiRijl3  ¢,' doesn't have local minima
JEN:
Find R;(0) by minimizing new cost function

%=Z( - RiR{)+ Y (Ri — RiRiy)

ko ien kEN; 14
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Procedure of Minimization
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Procedure of minimization (gradient descent)
2. Find aninitial set of translation and scales by optimizing only ¢,

ming, subjecttoﬂu 213, j)e E Rotation B; : fixed

0¢T
= =2 Z (T — T;) + AiRitri — Nir Riti,
€N
&pT
=i — (T, Ryt
e w— (T — ) KUkl
Update procedure
Ti(l+1) = Ti(l) ’EaT
A (14 1) = max{1, (1) — fg/\ﬂ

Global optimaof ¢, (4, =0) arenot in the feasible set

One of the constraints need to be active  min, e A=1
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Procedure of Minimization
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Procedure of minimization (gradient descent)
3. Optimize ¢ over dl the variables

gradg, o = gradg,or+ Y Mi(Ti = T — Rafes(Ti — To) " Ri)
€N
Jp _ Opr Op _ Oer

oT, ~— 9Ty, Mk

Reason of multi-step optimization

@ has multiple local minima |:> Good initialization is needed

Choice of step size
In gradient descent, it isimportant to select
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Outline
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Introduction
e Survey of [5]

 Application to our Research
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Preliminaries
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. . Camerai's .
Pose of camerai relative to world frame framém Gio Object

-2l )
Juwi = (Pwis Ruwi) Gui 7% ,ﬁﬁ"
) ) ) e 1 _ -~ Object
Pose of object relative to camerai < 95y 7 frames,

e

= (p; . orld ~Rl G n it

(pszw) framey.. gu/ ‘@ gﬂ:zajs
14

Relative pose of the camerai and |
9ij = (pij, Rij)
Estimated by Visual Motion Observer [8]
gio :Estimated pose of object by camerai

Definition of localization
Given arelative sensing network with reference nodel.
The reference frame transformation gr; for alie{2,---,n} are
uniquely determined.
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Measurement Methods Problem Settings
Tokyo Ingtitute of Technology Tokyo Institute of Technology
. i Camerai's Camerak's . . .
Relative sensing by cameras framaiﬁ frames, ‘% Consider 3 cameras (for simplicity) 1 5 3
* One camera sense relative pose of p New estimate variables: §;; *—0—0
P i N Gk
another camera (visibility graph) s M rements (estimated by VMO):[g:;
Attach feature points to camera ‘@/Cangzaj’s
frame L .
Directed graphG=(v.E)  Set of nodes; V={L--,N} What we want to do is minimize the overall cost function
. . . . 912, 912) + ©(g23, g23) + (31, §: i istri
Edge (i, )< E : i measurej's relative pose bp(G12, G12) + ©(G23, §23) + (a1, g31) in adistributed way
World Camerai’s Close as the measurements
frame>, frameX, ith . Gt dndiar = (1.0
« Use object to estimate the pose Guvi ot with aconstraints 12923431 = (1,0)
P rogiynied Determine the pose
s = Bl ; / g
- “guj lgi 2V Cost function ®(g1,92) = o By, Ro) + |T1 — T
By :Estimated relative pose sy 9 -+ Chie oo 5] (Geodesic d o(g1,92) 50(3)(1 v Re) +IT =Tl
N1 framer, rom eodesic distance) ;2 N T R,)2
Edge (i, j) e E : j measurei’s relative pose N o die [51 ¢ ) @) (Ri, Ra) = 5trace(log(R R2)*)
. ' i . . _ 1
Consider undirected connected graph @%ﬁ' s From [7] (Euclidean distance) (g g2} = [lp: — ml[* + gl — Ba|F
19 ».
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Problem Settings Gradient Method
Tokyo Ingtitute of Technology Tokyo Institute of Technology
Reparametrization 1 2 3 First we consider only orientation
*—0—0
min P

9ij = Gui Guj Gwi> Gw; -Absolute poses
Reference: nodel g, = (I,0)
Rewrite cost function
b (G105 G10) + ©(G20, G20) + (G305 G30) + P(Fuw1 1o Juw2G20) + P(Guw220; Juw3dso)
Close as the measurements Constraints (Determine the pose)

The pose of the object ge. should
be same, regardless of chosen path

Wefix two variables  gw1 = (1,0), Gus
=) Thesolutionwill betrivia  Gio = Gio  Juiliio = Juidio

Decision variables Glo> G205 G305 Juw2
Tokyo Initute of Technology

Minimize the cost function P

1, ~ o 1, =~ = 1, ~ .
¢ = §||R1o - Rioll7 + §||RQo — Rooll3 + §|\Rsa — Ryoll%
1, - = L 1,~ =~ L
+§”Ru'lRla — RuaRooll3 + §||R11'2R20 — RusRsoll%

Gradient descent

ov ov ov ov

Calculate the gradient < _ _ _
3R10 aRZo 8R30 8Ru;2

Update the estimates  Ri,(1+1) = expy, ) (—egradg, ) ¥)
Ry,(1): Estimates at iteration | £: Stepsize

Tokyo Institute of Technology Fujita Labor atory 2

Block Diagram of the Update Procedure
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With 2 cameras

Visual _ - ~
Motion Ri, Up(i_:alte of| Ri, I Ri,
Observerl - .
Update of | 72,2
; R
Visual _ N ‘
Motion 2 Upd-ate of | R,, i Ry,
Observer2 Has
Future Works

¢ Test and simulation
« Settings of the cost function (Interpretation)

« Consideration of directed graph
23
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Appendix
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Contributions of [4]

Contributions
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1. Formulation of frame localizability
2. Characterization of frame localizability for planar networks

3. Compute least-squares estimate of the orientationsin a2-D ring
network

4. Distributed algorithm for planar orientation localization

5. Conditions for orientation localizability in noiseless 3-D
networks
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Elements of Graph Theory[4]

Directed or undirected graph G=(V,E)

Set of nodes: V={1,--,N}  Edge: (i,j)e E
Path P: sequences of nodes Wl._w.z._.._. —~.

P={w,---,w},w eV,(w -w _)e Eme{l.--

Tokyo Institute of Technology

Cycle: e £(Gy) G, : directed graph
Path from node i to itself without repeated nodes m
Cyclevector 1; € {-1,0,1}" C R™
1: orientation is consistent with the orientation of |
-1: orientation is opposite with the orientation of |
0 : otherwise 'é
Ex.)

.
) L= [1 11 0]
Toyolnsited Tamaiy

Elements of Graph Theory[4]

Set of cyclevectors |L = {1,V € £L(Ga4)}

Set of fundamental cyclevectors L; C L L ﬂ

Constitute a base for L
2
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4
3

Fundamental cycles  £;(G) = {l € £L(G4)|1: € Ly}

Cycle matrix
C=M,,,1,]"  k Cardinality of L

Fundamental cycle matrix
Cr=My,--,1,]"  fordl M, eL;  r=dim(L)
Full rank matrix and not unique
29
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Localization Problem[4]
Sen
Angle-of-arrival sensing t s?r
ver rs(pj)

Measurement of nodei for nodej

Sensing range: r Sensing graph (Undirected graph): G, =(V,,E,)

Remark 8 (Data referencing motivation)
Measurements are taken in their respective reference frames

vers(p) € R* vers(v)_ (v#0)

Definition of localization

Problem 6 (Frame localizability)
Given arelative sensing network with reference nodel.
The reference frame transformation {&f s} for al i {2,---,n}
are uniquely determined by the relative measurements

R!:i'sorientation relativetonodel  p} :i’sposition
Tokyo Ingtitute of Technology




Orientation Localizability[4]

Tokyo nsitteot Technlogy
Relationships  vers(p}) = 7R}:x'01's(pf) 7
Lemma 10 (Feasible orientations)
Compute ui=vers(p}) Hi=exp(a;&)) a,e[0,7]
‘ ={ vers(u xu/) if uxu =0
' |anyunitlengthvector Lu,  otherwise
o) =atan,(Juj xu’|-u} -u))

Then all solutionsto (7) areR=exp(BU.)H'  pe[-=,7] :arbitrary angle

Theorem 11(Orientation L ocalizability for 2-D)

Consider arelative sensing network with 2-D and with noiseless
angle-of-arrival sensing. The following statements are equivalent:

(i) The sensing graph is connected

Orientation L ocalization with Noise[4]

Tokyo Institute of Technology

Consider planer network
Wecan measureonly  Y.=proj((£p, +n)) - (£p' +n') +z)

R’ 3

N, N’ :Noise (Gaussian with zero mean and varianceo')

proj(6)=(6+ z)mod 2z — 7

Enforce cycle constraint and mitigate the noise

Assign adirection to each edge
ifi>j e—e RRR=I

I J
Get directed graph G,=(V,,E,) Different from sensing graph!

Oriented edge e=(j,i)e E,with(i > j)

(i) The network is orientation localizable
Tokyo Ingtitute of Technology Tokyo Ingtitute of Technology
Problem Settings[4] Estimation Algorithm[4]
Tokyo Institute of Technology Tokyo Ingtitute of Technology
Let Arbitrary network G,
b : estimate of 6=6 . .
v c . Subset of thecycleset: £ C £(Ga) ¥ : estimate of edge e
1 € R™ : vector of angle estimates for all edges o
y :measurement vector with y =y’ Cycle-distributed system
. ‘ be(0) = e
Cycleerror ¢, = proj(1;- 1) . . . Ve
i Constraints (consistent estimates) Gelt+1) = we®) =k Y (- e)proj(l - ve(t)) O<x<<l
= pro_](z +e5) =0 el
fel :

+: whether direction of the edge f is concordant with the
direction of cyclel

L east-squares estimation problem
min [l — y|*

subjectto  proj(1;-¢) =0 foral e L(Ga)

Tokyo Institute of Technology. Fujita L aboratory 3

€ :ithentryisi,dl theothersare 0

Theorem 18 (Exponential convergence of iterative estimation algorithm)

The solution of cycle-distributed system with £ = £; converges
exponentially fast with factor p=(1- x)* ,with zero cycle error
with x<2/1+1_(F))

F=CC/ A (F) :Maximum eigenvalue of F

2
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Proof of the Theorem[4]

Tokyo Institute of Technology
dim(L,)=r
Fundamental cycles: |,,...,1,

Cycleerror vector = [, ,e,]7

VE+D) =yt -k Y Le(t)
1EL(Ga)
For every loop a € £(Ga)
&t+1)=€6() -k Z (1o - 1)e(t) €a(t) = (La - (1))

1€L(Ga)

For al loop
é(t+1) = é(t) — kCrCTe(t)
e(t +1) = proj((I» — kF)e(t)) IF =cscf

35
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Proof of the Theorem[4]

Consider linear system
x(t +1) = (I, — kF)z(t)
Lyapunov function candidate
V(z) =27 Pz P=1I,
Define Q=(2x-x*)I, >0 A=l —&F
Discrete-time Lyapunov inequality A'PA-P<-Q

L

k<2/(1+A_(F)) P-Qpl, p=1-«)’
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3-D Frame Localization[4]
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Lemma 19

Consider a network composed by three nodesin 3-D space with
angle-of-arrival sensing. Pick any one of the three nodes as
reference. If the sensing graph is the complete graph and the nodes
arein generic position with generic orientations, then there are
precisely tow feasible configurations for the three nodes and ,
therefore, the network is not orientation localizable.

3-D Frame Localization[4]

Tokyo Institute of Technology

Lemma 20

Consider a network composed by four nodesin the 3-D space
with angle-of-arrival sensing.

If the sensing graph is connected and there are at |east two
independent loops, then the network is orientation localizable.

4
Lemma 21
3 A necessary condition for anetwork in the 3- 1 3
1 D space with angle-of-arrival sensing to be
orientation localizable isto have at least 4
nodes >
2
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Definition of Localization [5] Estimation of the Rotations[5]
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Definition 1 (Localized network) [5]

A network is said to be localized if thereis a set of relative
transformations g such that, when the reference frame of the first
nodeisfixed to g , the other absolute poses g are uniquely
determined.

For any path | from node 1 to node i, we haveg =go g
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Gradient of ¢, with respect to R,

orat, p=- R 3 I0g(R]RR]) +I0g(RIRR,)
Update procedure

R+ =exps  (-egrady ) ¢ @ Step size
Initialization of the Rotations ¢, has multiple local minima
1. Set RO=.R(©O)=§,RO  Not distributed
2. New cost function wg%;HRJ -RR, Hi

Find R (0) by minimizing g, 9Ps_ ar 5
RODY 99 L (RRR)+ T RRR,)

@, doesn't have local minima
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Choice of the step size[5]

Minimization of quadratic form

Tokyo Institute of Technology

e men e

* Quadratic cost function restricted to aline (direction of the grad.)
isaparabola

« Maximum step-size is determined by maximum possible curvature
of the parabola

Related to maximum eigenvalue of M™M

Gersgorin Discs and Gersgorin Theorem
Maximum eigenvalue can be substituted with the maximum of
the absolute row sum of M™™
Apply for minimizing ¢ |:> Computed in a distributed way
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Calculation of the Gradient
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Consider
9(R) = 3IIR ~ I} = trace(I ~ R7Q) 6+ S0(3) + R
SO(3) is submanifold of R**?
Define é()=¢()  ¢: R SR
gradp(R) = Prgradpé(R) (1)
Projection: Pg : R** — TrSO(3) PrZ = Rsk(R"Z)

Tangent space: TrSO(3) = {RX € R**?|X € s0(3)}

< gradpg(R), Z >= DH(R)[Z]  (2)

<> Inner product < Zy, Z» >=trace(Z{ Z») Zy,Z» € R®*3
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Calculation of the Gradient

Directional derivative
D(E(R)[Z] = lim w

t—0

= —trace(Z7Q)  (3)
From (2) and (3)

gradpd(R) = —Q

gradpé(R) = Prgradpd(R) = Pr(-Q) = —Rsk(RTQ)
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