Survey of Camera Network Localization

$|\star|$

Takayuki Nishi
FL11-4-2
11 ${ }^{\text {th }}$, May, 2011

Overview of Localization

Mobile Robot Localization
Determining the pose of a robot relative to a given map of the environment
Knowledge of the location is necessary in robotic tasks

- Navigation - Surveillance
- Mapping

Sensors for detect the location

- Computer-vision
- GPS
- Encoder
- Range finder etc.

Localization Problems

Multi-agent localization

Multi-agent localization (cooperation)

Consideration

- Pose can usually not sensed directly
- No noise-free sensor
- Dynamic environment

Integrate data to determine the pose
Taxonomy of localization problems

- Local localization (position tracking) Initial robot pose is known
- Global localization Initial robot pose is unknown Robot is initially placed
- Kidnapped robot problem During operation, the robot gets teleported

Each robot localize itself individually
\square
Robots can detect each other (Relative location of robots)
Localization in sensor networks (Network localization)
GPS - Not work well in buildings or obstruction

- High cost

Special nodes (beacon) Know position
Relative pose estimation for pair of robots only distance measurements [2]

Heuristic-based (lack of theoretical foundation)
[2] N. Trwmy, X. S. Zhou, K. X. Zhou and S. I. Roumeliotis, "3D Relative Pose Estimation from Distance-only Measurements," Proc. of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1071-1078, 2007.

Theory of Network Localization

Theory of network localization [3]

1. What are the condition for unique network localizability?
2. What is the computational complexity of network localization?
3. What is the complexity of network localization in typical network deployment scenarios?
Localization theory in angle-of-arrival sensing [4]

- Formulation of frame localizability
- Distributed algorithm for planar orientation localization
- Conditions for orientation localizability in noiseless 3-D networks
[4] G. Piovan, I. Shames, B. Fidan, F. Bullo and B. D. O. Anderson, "On Frame and Orientation Localization for Relative Sensing Networks," Automatica, 2011. (submitted) ookyo Institute of Technology

Localization in Camera Networks

Localization in camera networks [5]
Distributed estimation of the poses of the cameras

- Estimated neighboring poses by standard computer vision techniques
- Minimizing a cost function on SE(3) in a distributed fashion
R. Vidal

Related work

- Pose Averaging [6], [7]
[5] R. Tron and R. Vidal, "Distributed Image-based 3-D Localization of Camera Sensor Networks," Proc. of the 48th IEEE Conference on Decision and Control, pp. 901-908, 2009.
[6] R. Tron, R. Vidal and A. Terzis, "Distributed Pose Averaging in Camera Sensor Networks via Consensus on SE(3)," Proc. of the International Conference on Distributed Smart Cameras, 2008.
[7] T. Hatanaka, T. Nishi and M. Fujita, "Passivity-based Cooperative Estimation Algorithm for Networked Visual Motion Observers," Proc. of the SICE Annual Conference 2011, 2011. (submitted) Tokyo Institute of Technology

Visual sensor networks

- Introduction
- Survey of [5]
- Application to our Research

Preliminaries

Method to Get Noisy Estimates

Undirected connected graph $G=(V, E)$
Set of nodes: $V=\{1, \cdots, N\} \quad$ Edge $(i, j) \in E: j$ communicate with i
Pose of each node: $g_{i}=\left(R_{i}, T_{i}\right) \in S E(3) \quad$ Relative Pose: $g_{i j}=g_{i}^{-1} \circ g_{j}$
Path l : sequences of nodes

$l=\left\{w_{1}, \cdots, w_{n}\right\}, w_{m} \in V,\left(w_{m}-w_{m+1}\right) \in E, m \in\{1, \cdots, n-1\}$
Relative pose along a path $l: g_{l}=g_{w_{n} w_{n-1}} \circ \cdots \circ g_{w_{2} w_{1}}$
Cycle: Path from node i to itself without repeated nodes

Definition 1 (Localized network) [5]

A network is said to be localized if there is a set of relative transformations such that, when the reference frame of the first node is fixed to g_{1}, the other absolute poses g_{i} are uniquely determined.
Tokyo Institute of Technology

|

Problem Settings

Goal: Find the relative transformations $g_{i j}$

1. Close as the relative measurements
2. Satisfy the constraints given in Definition1
(1) Minimize the cost function

$$
\varphi=\frac{1}{2} \sum_{j \in \mathcal{N}_{i}} d_{g}^{2}\left(g_{i j}, \tilde{g}_{i j}\right) \quad \begin{array}{ll}
d_{g}^{2}\left(g_{1}, g_{2}\right)=d_{S O(3)}^{2}\left(R_{1}, R_{2}\right)+\left\|T_{1}-T_{2}\right\|^{2} \\
d_{S O(3)}^{2}\left(R_{1}, R_{2}\right)=-\frac{1}{2} \operatorname{trace}\left(\log \left(R_{1}^{T} R_{2}\right)^{2}\right)
\end{array}
$$

Neighbor set: $\mathcal{N}_{i}=\{j \in V \mid(j, i) \in E\}$
(2) Constraints

For any path l from node 1 to node i,

Epipolar Constraint
Extract feature points x_{i}, x_{j}
x_{i}, x_{j} : homogeneous coordinates

$$
x=\left[\begin{array}{lll}
a & b & 1
\end{array}\right]^{T}
$$

Vector $x_{i}, T_{i j}, R_{i j} x_{j}$ lie in an epipolar plane

$$
X_{i}^{T} \hat{T}_{i j} R_{i j} X_{j}=0
$$

Use more than 8 feature points \quad derive $t_{u j}=\frac{T_{i u}}{\left\|T_{u}\right\|}, R_{u}$
Measurements are corrupted by noise
Unknown scales $\lambda_{i j} \quad \tilde{T}_{i j}=\lambda_{i j} \tilde{t}_{i j}$
Noisy relative pose $\tilde{g}_{i j}=\left(\tilde{R}_{i j}, \tilde{T}_{i j}\right)$

| \times | Consideration of the Consistent Constraints

Reparametrize relative pose $g_{i j}$
Using absolute pose g_{i}, g_{j}
Proposition 1 : The following are equivalent

1. The network is localized
2. For any cycle $l=\left\{w_{1}, \cdots, w_{n}, w_{1}\right\}, w_{m} \in V, n>1$ The transformation along the cycle is $\boldsymbol{q}=(\boldsymbol{I}, \mathbf{0})$
3. There exist a set of absolute poses \boldsymbol{g}_{i} such that $\boldsymbol{g} \boldsymbol{J}=\boldsymbol{g}_{\boldsymbol{i}}^{-\mathbf{I}} \boldsymbol{a}_{\boldsymbol{g}}$

Compute the absolute poses g_{i}, relative pose $g_{i j}$ will be uniquely determined

The consistent constraints will be automatically satisfied
困 Problem Settings

囵Procedure of Minimization

Rewrite using absolute poses

$$
\begin{aligned}
\varphi & =\frac{1}{2} \sum_{j \in \mathcal{N}_{i}} d_{g}^{2}\left(g_{i j}, \tilde{g}_{i j}\right)=\frac{1}{2} \sum_{j \in \mathcal{N}_{i}} d_{g}^{2}\left(g_{i}^{-1} g_{j}, \tilde{g}_{i j}\right) \\
& \left.=\frac{1}{2} \sum_{j \in \mathcal{N}_{i}}\left(d_{S O(3)}^{2}\left(R_{i}^{T} R_{j}, \ddot{R}_{i j}\right)+\| R_{i}^{T}\left(T_{j}-T_{i}\right)-\lambda_{i j} \tilde{t}_{i j}\right) \|^{2}\right) \\
& =\underline{\varphi_{R}\left(\left\{R_{i}\right\}\right)}+\underline{\varphi_{T}\left(\left\{R_{i}\right\},\left\{T_{i}\right\},\left\{\lambda_{i j}\right\}\right)}
\end{aligned}
$$

Only Rotation All variables
Consider $\lambda_{i j}=0$
$\lambda_{i j}=0 \Rightarrow T_{i}=T_{j} \quad \varphi_{T}=0 \quad$ Global minimum but trivial
$\lambda_{i j}$ must be positive \Rightarrow Proposed idea: Minimum scale $\lambda_{i j} \geq 1$
Summary (localization problem)

Procedure of minimization (gradient descent)

1. Find an initial set of rotations by optimizing only φ_{R}

$$
\begin{gathered}
\operatorname{grad}_{R_{k}} \varphi_{R}=-R_{k} \sum_{i \in \mathcal{N}_{k}} \log \left(R_{k}^{T} R_{i} \tilde{R}_{k i}^{T}\right)+\log \left(R_{k}^{T} R_{i} \tilde{R}_{i k}\right) \\
R_{k}(l+1)=\exp _{R_{k}(l)}\left(-\epsilon \operatorname{grad}_{R_{k}(l)}\right)
\end{gathered} R_{k}(l): \text { Rotation at } \quad \varepsilon: \text { Step size } \quad l
$$

Initialization of the Rotations $\quad \varphi_{\mathrm{R}}$ has multiple local minima
Set new cost function

$$
\varphi_{R}^{\prime}=\frac{1}{2} \sum_{j \in \mathcal{N}_{i}}\left\|R_{j}-R_{i} \tilde{R}_{i j}\right\|_{F}^{2} \quad \varphi_{R}^{\prime} \text { doesn't have local minima }
$$

Find $R_{i}(0)$ by minimizing new cost function

$$
\frac{\partial \varphi_{R}^{\prime}}{\partial R_{k}}=\sum_{i \in \mathcal{N}_{k}}\left(R_{k}-R_{i} \tilde{R}_{k i}^{T}\right)+\sum_{k \in \mathcal{N}_{i}}\left(R_{k}-R_{i} \tilde{R}_{i k}\right)
$$

Procedure of Minimization

Procedure of minimization (gradient descent)
2. Find an initial set of translation and scales by optimizing only φ_{T} $\min \varphi_{T} \quad$ subject to $\lambda_{i j} \geq 1(i, j) \in E \quad$ Rotation R_{i} : fixed

$$
\begin{aligned}
& \frac{\partial \varphi_{T}}{\partial T_{k}}=2 \sum_{i \in \mathcal{N}_{k}}\left(T_{k}-T_{i}\right)+\lambda_{k i} R_{k} \tilde{t}_{k i}-\lambda_{i k} R_{i} \tilde{t}_{i k} \\
& \frac{\partial \varphi_{T}}{\partial \lambda_{l k}}=\lambda_{l k}-\left(T_{l}-T_{k}\right)^{T} R_{k} \tilde{t}_{k l}
\end{aligned}
$$

Update procedure

$$
\begin{aligned}
& T_{k}(l+1)=T_{k}(l)-\epsilon \frac{\partial \varphi_{T}}{\partial T_{k}} \\
& \lambda_{l k}(l+1)=\max \left\{1, \lambda_{l k}(l)-\epsilon \frac{\partial \varphi_{T}}{\partial \lambda_{l k}}\right\}
\end{aligned}
$$

Global optima of $\varphi_{T}\left(\lambda_{j}=0\right)$ are not in the feasible set

Procedure of Minimization

Procedure of minimization (gradient descent)
3. Optimize φ over all the variables

$$
\begin{aligned}
& \operatorname{grad}_{R_{k}} \varphi=\operatorname{grad}_{R_{k}} \varphi_{R}+\sum_{i \in \mathcal{N}_{k}} \lambda_{k i}\left(\left(T_{i}-T_{k}\right) \tilde{t}_{k i}^{T}-R_{k} \tilde{t}_{k i}\left(T_{i}-T_{k}\right)^{T} R_{k}\right) \\
& \frac{\partial \varphi}{\partial T_{k}}=\frac{\partial \varphi_{T}}{\partial T_{k}} \quad \frac{\partial \varphi}{\partial \lambda_{l k}}=\frac{\partial \varphi_{T}}{\partial \lambda_{l k}}
\end{aligned}
$$

Reason of multi-step optimization
φ has multiple local minima
Good initialization is needed
Choice of step size
In gradient descent, it is important to select
One of the constraints need to be active $\min \quad \lambda=1$

Outline

- Introduction

- Survey of [5]
- Application to our Research

Preliminaries

Pose of camera i relative to world frame

$$
g_{w i}=\left(p_{w i}, R_{w i}\right)
$$

Pose of object relative to camera i

$$
g_{i o}=\left(p_{i o}, R_{i o}\right)
$$

Relative pose of the camera i and j

$$
g_{i j}=\left(p_{i j}, R_{i j}\right)
$$

Estimated by Visual Motion Observer [8] $\bar{g}_{i o}$:Estimated pose of object by camera i

Definition of localization

Given a relative sensing network with reference node1.
The reference frame transformation $\boldsymbol{g}_{\mathbf{L i}}$ for all $i \in\{2, \cdots, n\}$ are uniquely determined.

[6] R. Tron, R. Vidal and A. Terzis, "Distributed Pose Averaging in Camera Sensor Networks via Consensus on SE(3)," Proc. of the International Conference on Distributed Smart Cameras, 2008.
[7] T. Hatanaka, T. Nishi and M. Fujita, "Passivity-based Cooperative Estimation Algorithm for Networked Visual Motion Observers," Proc. of the SICE Annual Conference 2011, 2011. (submitted)
[8] M. Fujita, H. Kawai and M. W. Spong, "Passivity-based Dynamic Visual Feedback Control for Three Dimensional Target Tracking: Stability and L2-gain Performance Analysis," IEEE Transactions on Control Systems Technology, Vol.15, No. 1, pp. 40-52, 2007.
[8] P. A. Absil, R. Mahony and R. Sepulchre, "Optimization Algorithms on Matrix Manifolds," Princeton Press, 2008.

Appendix

Contributions of [4]

Contributions

1. Formulation of frame localizability
2. Characterization of frame localizability for planar networks
3. Compute least-squares estimate of the orientations in a $2-\mathrm{D}$ ring network
4. Distributed algorithm for planar orientation localization
5. Conditions for orientation localizability in noiseless 3-D networks

Elements of Graph Theory[4]

Directed or undirected graph $G=(V, E)$
Set of nodes: $V=\{1, \cdots, N\} \quad$ Edge: $(i, j) \in E$
Path P : sequences of nodes

$$
P=\left\{w_{1}, \cdots, w_{n}\right\}, w_{m} \in V,\left(w_{m}-w_{m+1}\right) \in E, m \in\{1, \cdots, n-1\}
$$

Cycle: $l \in \mathcal{L}\left(G_{d}\right)$
G_{a} : directed graph
Path from node i to itself without repeated nodes

Cycle vector $\mathbf{1}_{l} \in\{-1,0,1\}^{m} \subset \mathbb{R}^{m}$
1 : orientation is consistent with the orientation of l
-1 : orientation is opposite with the orientation of l
0 : otherwise

$$
\text { Ex.) } \quad \mathbf{1}_{l}=\left[\begin{array}{llll}
1 & -1 & 1 & 0
\end{array}\right]^{T}
$$

Localization Problem[4]

Angle-of-arrival sensing
Measurement of node i for node j

$$
\operatorname{vers}\left(p_{j}^{i}\right) \in \mathbb{R}^{d} \quad \operatorname{vers}(\mathbf{v})=\frac{\mathbf{v}}{\|\mathbf{v}\|}(\mathbf{v} \neq 0)
$$

Sensing range: $r \quad$ Sensing graph (Undirected graph): $G_{s}=\left(V_{s}, E_{s}\right)$

Remark 8 (Data referencing motivation)

Measurements are taken in their respective reference frames
Definition of localization

Problem 6 (Frame localizability)

Given a relative sensing network with reference node1.
The reference frame transformation $\left\{\mathbf{R}_{\mathbb{Z}}^{\mathbf{Y}}, \mathbf{x}\right\}$ are uniquely determined by the relative measurements
R_{i}^{1} :i's orientation relative to node1 $\quad p_{i}^{1}$:i's position

$\|\star\|$	Orientation Localizability[4]		
Relationships	$\operatorname{vers}\left(p_{j}^{i}\right)=-R_{j}^{i} \operatorname{vers}\left(p_{i}^{j}\right) \quad$ (7)		
Lemma 10 (Feasible orientations)			
Compute	$\begin{aligned} & u_{j}^{i}=\operatorname{vers}\left(p_{j}^{i}\right) \quad \mathbf{H}_{j}^{i}=\exp \left(\alpha_{j}^{i} \hat{\mathbf{e}}_{j}^{\prime}\right) \\ & \mathbf{e}_{j}^{\prime}=\left\{\begin{array}{c} \text { vers }\left(u_{i}^{\prime} \times u_{i}^{\prime}\right) \\ \text { anyunit length vector } \perp u_{j}^{\prime} \end{array}\right. \\ & \alpha_{j}^{\prime}=a \tan _{2}\left(\left\|u_{j}^{\prime} \times u_{i}^{\prime} \\|\right\|,-u_{j}^{\prime} \cdot u_{i}^{\prime}\right) \end{aligned}$	$\begin{gathered} \alpha_{j}^{i} \in[0, \pi] \\ \text { if } u_{j}^{u} \times u_{l}^{\prime}=\mathbf{0} \\ \text { otherwise } \end{gathered}$	

Then all solutions to (7) are $R_{j}^{\prime}=\exp \left(\beta \hat{u}_{j}^{\prime}\right) \mathbf{H}_{j}^{i} \quad \beta \in[-\pi, \pi]$:arbitrary angle

Theorem 11(Orientation Localizability for 2-D)

Consider a relative sensing network with 2-D and with noiseless angle-of-arrival sensing. The following statements are equivalent:
(i) The sensing graph is connected
(ii) The network is orientation localizable

Consider planer network
We can measure only $\quad y_{j}^{i}=\operatorname{proj}\left(\left(\angle p_{j}^{i}+n_{j}^{i}\right)-\left(\angle p_{i}^{j}+n_{i}^{j}\right)+\pi\right)$
n_{i}^{i}, n_{i}^{j} :Noise (Gaussian with zero mean and variance σ) $\operatorname{proj}(\theta)=(\theta+\pi) \bmod 2 \pi-\pi$

Enforce cycle constraint and mitigate the noise
Assign a direction to each edge

If $i>j$

$R_{2}^{1} R_{3}^{2} R_{1}^{3}=I$

Get directed graph $G_{d}=\left(V_{s}, E_{d}\right) \quad$ Different from sensing graph!
Oriented edge $e=(j, i) \in E_{d}$ with $(i>j)$

Let
ψ_{e} : estimate of $\theta_{e}=\theta_{i}^{j}$
$\psi \in \mathbb{R}^{m}$: vector of angle estimates for all edges
y :measurement vector with $y_{e}=y_{i}^{i}$
Cycle error $\epsilon_{l}=\operatorname{proj}\left(\mathbf{1}_{l} \cdot \psi\right)$

$$
\begin{aligned}
& =\operatorname{proj}\left(\mathbf{1}_{l} \cdot \psi\right) \quad \text { Constraints (consistent estimates) } \\
& =\operatorname{proj}\left(\sum_{f \in l} \pm \psi_{f}\right)=0
\end{aligned}
$$

\pm : whether direction of the edge f is concordant with the direction of cycle l

Least-squares estimation problem

$$
\min _{\psi}\|\psi-y\|^{2}
$$

$$
\text { subject to } \quad \operatorname{proj}\left(\mathbf{1}_{l} \cdot \psi\right)=0 \quad \text { for all } \quad l \in \mathcal{L}\left(G_{d}\right)
$$

Arbitrary network G_{d}
Subset of the cycle set: $\hat{\mathcal{L}} \subseteq \mathcal{L}\left(G_{d}\right) \quad \psi_{e}$: estimate of edge e
Cycle-distributed system

$$
\begin{aligned}
\psi_{e}(0) & =y_{e} \\
\psi_{e}(t+1) & =\psi_{e}(t)-\kappa \sum_{l \in \hat{\mathcal{L}}: e \in l}\left(\mathbf{1}_{l} \cdot \mathbf{e}_{\epsilon}\right) \operatorname{proj}\left(\mathbf{1}_{l} \cdot \psi_{e}(t)\right) \quad 0<\kappa \ll 1 \\
\mathbf{e}_{i} & : i \text { th entry is } 1, \text { all the others are } 0
\end{aligned}
$$

Theorem 18 (Exponential convergence of iterative estimation algorithm)
The solution of cycle-distributed system with $\hat{\mathcal{L}}=\mathcal{L}_{f}$ converges exponentially fast with factor $\rho=(1-\kappa)^{2}$, with zero cycle error with $\kappa<2 /\left(1+\lambda_{\max }(F)\right)$

$$
F=C_{f} C_{f}^{\tau} \quad \lambda_{\max }(F): \text { Maximum eigenvalue of } F
$$

Tokyo Institute of Technolog

Proof of the Theorem[4]

Consider linear system

$$
x(t+1)=\left(I_{r}-\kappa F\right) x(t)
$$

Lyapunov function candidate

$$
V(x)=x^{T} P x \quad P=I_{r}
$$

Define $\quad Q=\left(2 \kappa-\kappa^{2}\right) I_{r}>0 \quad A=I_{r}-\kappa F$
Discrete-time Lyapunov inequality $\quad A^{T} P A-P \leq-Q$

$$
\underbrace{P-Q=\rho I_{r} \quad \rho=(1-\kappa)^{2}}_{\kappa<2 /\left(1+\lambda_{\max }(F)\right)}
$$

For all loop

$$
\begin{aligned}
\hat{\epsilon}(t+1) & =\hat{\epsilon}(t)-\kappa C_{f} C_{f}^{T} \epsilon(t) \\
\epsilon(t+1) & =\operatorname{proj}\left(\left(I_{r}-\kappa F\right) \epsilon(t)\right) \quad F=C_{f} C_{f}^{T}
\end{aligned}
$$

Lemma 19

Consider a network composed by three nodes in 3-D space with angle-of-arrival sensing. Pick any one of the three nodes as reference. If the sensing graph is the complete graph and the nodes are in generic position with generic orientations, then there are precisely tow feasible configurations for the three nodes and , therefore, the network is not orientation localizable.

Lemma 20

Consider a network composed by four nodes in the 3-D space with angle-of-arrival sensing.
If the sensing graph is connected and there are at least two independent loops, then the network is orientation localizable.

Lemma 21

A necessary condition for a network in the 3D space with angle-of-arrival sensing to be orientation localizable is to have at least 4 nodes

| $\times 1$

Estimation of the Rotations[5]

Gradient of φ_{R} with respect to R_{k}

$$
\operatorname{grad}_{R_{k}} \varphi_{R}=-R_{k} \sum_{k \rightarrow i} \log \left(R_{j}^{T} R_{i} \tilde{R}_{k i}^{T}\right)+\log \left(R_{k}^{T} R_{i} \tilde{R}_{k k}\right)
$$

Update procedure

$$
R_{k}(l+1)=\exp _{R_{k}(l)}\left(-\varepsilon \operatorname{grad}_{R_{k}(l)}\right) \quad \varepsilon \text { : Step size }
$$

Definition 1 (Localized network) [5]

A network is said to be localized if there is a set of relative transformations such that, when the reference frame of the first node is fixed to $\mathbf{g r}$, the other absolute poses $\boldsymbol{g}_{\boldsymbol{6}}$ are uniquely determined.
For any path l from node 1 to node i, we have $\boldsymbol{g} \boldsymbol{i}=\boldsymbol{g} \circ \mathbf{g}_{\mathbf{n}}$

Initialization of the Rotations $\quad \varphi_{R}$ has multiple local minima

1. Set $R_{1}(0)=I, R_{i}(0)=\tilde{g}_{14} R_{1}(0) \quad$ Not distributed
2. New cost function $\varphi_{R}^{\prime}=\frac{1}{2} \sum_{i \rightarrow j}\left\|R_{j}-R_{i} \tilde{R}_{i j}\right\|_{F}^{2}$

Find $R_{i}(0)$ by minimizing φ_{R}

$$
\frac{\partial \varphi_{R}^{k}}{\partial R_{k}}=\sum_{k \rightarrow 1}\left(R_{k} R_{i} \tilde{R}_{k i}^{T}\right)+\sum_{i \rightarrow 3}\left(R_{k} R_{i} \tilde{R}_{k}\right)
$$

φ_{R} ' doesn't have local minima

Tokyo Institute of Tecthology

|ネ| Calculation of the Gradient

Consider

$$
\phi(R)=\frac{1}{2}\|R-Q\|_{F}^{2}=\operatorname{trace}\left(I-R^{T} Q\right) \quad \phi: S O(3) \rightarrow \mathbb{R}
$$

$\mathrm{SO}(3)$ is submanifold of $\mathbb{R}^{3 \times 3}$

$$
\begin{align*}
& \text { Define } \bar{\phi}(\cdot)=\phi(\cdot) \quad \bar{\phi}: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R} \\
& \operatorname{grad}_{R} \phi(R)=P_{R} \operatorname{grad}_{R} \bar{\phi}(R) \quad \text { (1) } \\
& \text { Projection: } P_{R}: \mathbb{R}^{3 \times 3} \rightarrow T_{R} S O(3) \quad P_{R} Z=R \operatorname{sk}\left(R^{T} Z\right) \\
& \text { Tangent space: } T_{R} S O(3)=\left\{R X \in \mathbb{R}^{3 \times 3} \mid X \in \operatorname{so}(3)\right\} \\
& <\operatorname{grad}_{R} \bar{\phi}(R), Z>=D \bar{\phi}(R)[Z] \quad \text { (2) } \tag{2}\\
& <\cdot, \cdot>\text { : Inner product }<Z_{1}, Z_{2}>=\operatorname{trace}\left(Z_{1}^{T} Z_{2}\right) \quad Z_{1}, Z_{2} \in \mathbb{R}^{3 \times 3}
\end{align*}
$$

Apply for minimizing φ \qquad Computed in a distributed way

Directional derivative

$$
D \bar{\phi}(R)[Z]=\lim _{t \rightarrow 0} \frac{\bar{\phi}(R+t Z)-\bar{\phi}(R)}{t}=-\operatorname{trace}\left(Z^{T} Q\right)
$$

From (2) and (3)

$$
\operatorname{grad}_{R} \bar{\phi}(R)=-Q
$$

$$
\operatorname{grad}_{R} \phi(R)=P_{R} \operatorname{grad}_{R} \bar{\phi}(R)=P_{R}(-Q)=-R \operatorname{sk}\left(R^{T} Q\right)
$$

