

References	Tokyo Institute of Technology
[6] R. Tron, R. Vidal and A. Terzis, "Distributed Pose Averaging in Camera Sensor Networks via Consensus on SE(3)," <i>Proc. of the International Conference on Distributed</i> <i>Smart Cameras</i> , 2008.	
[7] T. Hatanaka, T. Nishi and M. Fujita, "Passivity-based Cooperative Estimation Algorithm for Networked Visual Motion Observers," <i>Proc. of the SICE Annual Conference</i> 2011, 2011. (submitted)	Appendix
[8] M. Fujita, H. Kawai and M. W. Spong, "Passivity-based Dynamic Visual Feedback Control for Three Dimensional Target Tracking: Stability and L2-gain Performance Analysis," <i>IEEE Transactions on Control Systems Technology</i> , Vol.15, No. 1, pp. 40-52, 2007.	
[8] P. A. Absil, R. Mahony and R. Sepulchre, "Optimization Algorithms on Matrix Manifolds," Princeton Press, 2008.	
Tokyo Institute of Technology Pujita Laboratory 25	Z6 Tokyo Institute of Technology Fujita Laboratory
Contributions of [4]	Elements of Graph Theory[4]
Contributions	Directed or undirected graph $G = (V, E)$
1. Formulation of frame localizability	Set of nodes: $V = \{1, \dots, N\}$ Edge: $(i, j) \in E$
2. Characterization of frame localizability for planar networks	Path P: sequences of nodes $n_1 + n_2 + n_3 + n_4 + n_5 + n$
3. Compute least-squares estimate of the orientations in a 2-D ring	$P = \{w_1, \dots, w_n\}, w_m \in V, (w_m - w_{m+1}) \in E, m \in \{1, \dots, n-1\}$
network	Path from node <i>i</i> to itself without repeated nodes i
4. Distributed algorithm for planar orientation localization	Cycle vector $1_l \in \{-1, 0, 1\}^m \subset \mathbb{R}^m$
 Conditions for orientation localizability in noiseless 3-D networks 	1 : orientation is consistent with the orientation of l -1 : orientation is opposite with the orientation of l 0 : otherwise
Tokyo Institute of Technology Pujita Laboratory 27	Ex.) $1_{l} = \begin{bmatrix} 1 & -1 & 1 & 0 \end{bmatrix}^{T}$ Tokyo Institute of Technology
Elements of Graph Theory[4]	Localization Problem[4]
Set of cycle vectors $L = \{1_l \forall l \in \mathcal{L}(G_d)\}$	Angle-of-arrival sensing
Set of fundamental cycle vectors $L_f \subset L$	Measurement of node <i>i</i> for node <i>j</i> $(\bullet_i \bullet_r)$
Constitute a base for L	$\operatorname{vers}(p_j^i) \in \mathbb{R}^d \operatorname{vers}(\mathbf{v}) = \frac{\mathbf{v}}{\ \mathbf{v}\ } (\mathbf{v} \neq 0)$
Fundamental cycles $\mathcal{L}_{f}(G) = \{l \in \mathcal{L}(G_{d}) 1_{l} \in L_{f}\}$	Sensing range: <i>r</i> Sensing graph (Undirected graph): $G_s = (V_s, E_s)$ Perpert 8 (Data referencing motivation)
Cycle matrix	Measurements are taken in their respective reference frames
$C = [1_{t_1}, \cdots, 1_{t_k}]^T \qquad k: \text{ Cardinality of } L$	Definition of localization
- Fundamental cycle matrix	Problem 6 (Frame localizability) Given a relative sensing network with reference node1.
$C_f = [1_{l_1}, \cdots, 1_{l_r}]^T \text{for all} 1_{l_i} \in L_f \qquad r = \dim(L_f)$	The reference frame transformation $\{\mathbf{R}_{i}^{t}, \mathbf{x}_{i}^{t}\}$ for all $i \in \{2, \dots, n\}$ are uniquely determined by the relative measurements
Full rank matrix and not unique	$R_i^1:i$'s orientation relative to nodel $p_i^1:i$'s position
Tokyo Institute of Technology 29 Fujita Laboratory	Tokyo Institute of Technology Fujita Laboratory 30

☆ 3-D Frame Localization[4] 3-D Frame Localization[4] Lemma 20 Lemma 19 Consider a network composed by three nodes in 3-D space with Consider a network composed by four nodes in the 3-D space angle-of-arrival sensing. Pick any one of the three nodes as with angle-of-arrival sensing. reference. If the sensing graph is the complete graph and the nodes If the sensing graph is connected and there are at least two are in generic position with generic orientations, then there are independent loops, then the network is orientation localizable. precisely tow feasible configurations for the three nodes and, therefore, the network is not orientation localizable. Lemma 21 A necessary condition for a network in the 3-D space with angle-of-arrival sensing to be orientation localizable is to have at least 4 nodes Tokyo Institute of Technology Tokyo Institute of Technolo **₩** ₼ Definition of Localization [5] Estimation of the Rotations[5] Definition 1 (Localized network) [5] Gradient of φ_R with respect to R_k $\operatorname{grad}_{R_k} \varphi_R = -R_k \sum \log(R_j^T R_i \widetilde{R}_{ki}^T) + \log(R_k^T R_i \widetilde{R}_{ik})$ A network is said to be localized if there is a set of relative transformations nu such that, when the reference frame of the first Update procedure node is fixed to **g**, the other absolute poses **g** are uniquely $R_k(l+1) = \exp_{R_k(l)}(-\varepsilon \operatorname{grad}_{R_k(l)}) \quad \varepsilon : \text{Step size}$ determined. For any path *l* from node 1 to node *i*, we have $\mathbf{g}_i = \mathbf{g} \circ \mathbf{g}_i$ Initialization of the Rotations φ_{R} has multiple local minima 1. Set $R_1(0)=I, R_2(0)=\widetilde{g}_1, R_1(0)$ Not distributed 2. New cost function $\varphi_R = \frac{1}{2} \sum_{k} \left\| R_{j} - R_{i} \widetilde{R}_{ij} \right\|^{2}$ $\frac{\partial \varphi_{R}}{\partial R} = \sum \left(R_{k} R_{i} \widetilde{R}_{ki}^{T} \right) + \sum \left(R_{k} R_{i} \widetilde{R}_{ik} \right)$ Find $R_i(0)$ by minimizing φ_R φ_{e} ' doesn't have local minima Tokyo Institute of Technology ☆ ♠ Choice of the step size[5] Calculation of the Gradient Minimization of quadratic form Consider $\phi(R) = \frac{1}{2} ||R - Q||_F^2 = \operatorname{trace}(I - R^T Q) \quad \phi: SO(3) \to \mathbb{R}$ $\varphi = \frac{1}{2} \|My\|^2$ $M \in \Re^{q \times p}$ $y \in \Re^{p}$ SO(3) is submanifold of $\mathbb{R}^{3\times 3}$ • Quadratic cost function restricted to a line (direction of the grad.) is a parabola Define $\bar{\phi}(\cdot) = \phi(\cdot)$ $\bar{\phi}:\mathbb{R}^{3\times 3}\to\mathbb{R}$ • Maximum step-size is determined by maximum possible curvature $\operatorname{grad}_R \phi(R) = P_R \operatorname{grad}_R \bar{\phi}(R)$ (1) of the parabola Related to maximum eigenvalue of $M^T M$ Projection: $P_R : \mathbb{R}^{3 \times 3} \to T_R SO(3)$ $P_R Z = R \operatorname{sk}(R^T Z)$ Tangent space: $T_RSO(3) = \{RX \in \mathbb{R}^{3 \times 3} | X \in so(3)\}$ Gersgorin Discs and Gersgorin Theorem Maximum eigenvalue can be substituted with the maximum of $\langle \operatorname{grad}_{R}\bar{\phi}(R), Z \rangle = D\bar{\phi}(R)[Z]$ (2) the absolute row sum of $M^T M$ $\langle \cdot, \cdot \rangle$: Inner product $\langle Z_1, Z_2 \rangle = \operatorname{trace}(Z_1^T Z_2) \quad Z_1, Z_2 \in \mathbb{R}^{3 \times 3}$ Apply for minimizing φ_{τ} \Box Computed in a distributed way 42 Fuilte Lohow Tokyo Institute of Technology Tokyo Institute of Technology

