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Overview of Localization

Mobile Robot Localization

Determining the pose of a robot relative to a 
given map of the environment

Knowledge of the location is necessary 
in robotic tasks

• Navigation

• Mapping

• Surveillance

Sensors for detect the location

• Computer-vision

• GPS

• Encoder

• Range finder etc.
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Localization Problems

Taxonomy of localization problems
• Local localization (position tracking)

Initial robot pose is known 

• Kidnapped robot problem

• Global localization
Initial robot pose is unknown Robot is initially placed

During operation, the robot gets teleported

• Pose can usually not sensed directly

Integrate data to determine the pose

Consideration

• No noise-free sensor
• Dynamic environment
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Multi-agent localization

Multi-agent localization (cooperation)

Each robot localize itself individually

Robots can detect each other (Relative location of robots )

Localization in sensor networks (Network localization)

Special nodes (beacon)
Relative pose estimation for pair of robots only distance 
measurements [2]

Know position

Heuristic-based (lack of theoretical foundation)

GPS • Not work well in buildings or obstruction
• High cost

[2] N. Trwmy, X. S. Zhou, K. X. Zhou and S. I. Roumeliotis, “3D Relative Pose Estimation from 
Distance-only Measurements,” Proc. of the 2007 IEEE/RSJ International Conference on Intelligent 
Robots and Systems, pp. 1071-1078, 2007.
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Theory of Network Localization

Theory of network localization [3]

1. What are the condition for unique network localizability?

2. What is the computational complexity of network localization?

3. What is the complexity of network localization in typical 
network deployment scenarios?

Francesco Bullo

Localization theory in angle-of-arrival sensing [4]

• Formulation of frame localizability

• Distributed algorithm for planar orientation 
localization

• Conditions for orientation localizability in noiseless 
3-D networks

[4] G. Piovan, I. Shames, B. Fidan, F. Bullo and B. D. O. Anderson, “On Frame and Orientation 
Localization for Relative Sensing Networks,” Automatica, 2011. (submitted)
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Localization in Camera Networks

Localization in camera networks [5]

R. Vidal

• Pose Averaging [6], [7]

Related work

[5] R. Tron and R. Vidal, “Distributed Image-based 3-D Localization of Camera Sensor Networks,”
Proc. of the 48th IEEE Conference on Decision and Control, pp. 901-908, 2009.

[7] T. Hatanaka, T. Nishi and M. Fujita, “Passivity-based Cooperative Estimation Algorithm for 
Networked Visual Motion Observers,” Proc. of the SICE Annual Conference 2011, 2011. (submitted)

Distributed estimation of the poses of the cameras

• Estimated neighboring poses by standard computer 
vision techniques

• Minimizing a cost function on SE(3) in a distributed 
fashion

[6] R. Tron, R. Vidal and A. Terzis, “Distributed Pose Averaging in Camera Sensor Networks via 
Consensus on SE(3),” Proc. of the International Conference on Distributed Smart Cameras, 2008.
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Comparison of Related Work

Visual sensor networks

• Simultaneous Estimation & Optimization

R. Vidal

Pose averaging Localization

Fujita Lab.

[6]

[7] My work??

[5]

• Dynamic Estimation 

• Static object and scene 
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• Introduction

• Survey of [5]

• Application to our Research

Outline
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Preliminaries

),( EVG =Undirected connected graph

Eji ∈),(Edge               : j communicate with i

Pose of each node: Relative Pose:

Path l : sequences of nodes

}1,,1{,)(,},,,{ 11 −∈∈−∈= + nmEwwVwwwl mmmn LL

1w
nw2w

Relative pose along a path l:

},,1{ NV L=Set of nodes:

iCycle: Path from node i to itself without repeated nodes

Definition 1 (Localized network) [5]
A network is said to be localized if there is a set of relative 
transformations       such that, when the reference frame of the first 
node is fixed to     , the other absolute poses    are uniquely 
determined.
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Method to Get Noisy Estimates

Epipolar Constraint

Extract feature points ji xx ,

ji xx , : homogeneous coordinates

[ ]Tbax 1=

Vector                    lie in an epipolar plane
jijiji xRTx ,,

0ˆ =jijij

T

i xRTx
derive  ij

ij

ij

ij R
T
T

t ,=

Noisy relative pose

Use more than 8 feature points

ijijij tT ~~ λ=Unknown scales
ijλ

P

ix
jij xR

ijTiΣ
jΣ

Image

Measurements are corrupted by noise
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Problem Settings

Goal: Find the relative transformations      

1. Close as the relative measurements

2. Satisfy the constraints given in Definition1

① Minimize the cost function

② Constraints
For any path l from node 1 to node i, 
we have                 , regardless of chosen path 1

2
3

4

Neighbor set: 
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Consideration of the Consistent Constraints

Reparametrize relative pose

Using absolute pose

The consistent constraints will be automatically satisfied

Compute the absolute poses    , relative pose     will be uniquely  
determined

Proposition 1 : The following are equivalent
1. The network is localized

2. For any cycle 1,},,,,{ 11 >∈= nVwwwwl mnL

The transformation along the cycle is 

3. There exist a set of absolute poses     such that

l1

2

4
3
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Problem Settings

Rewrite using absolute poses

Only Rotation All variables
Consider 0=ijλ

ijλ must be positive 

0=ijλ ji TT= 0=Tϕ Global minimum but trivial

Proposed idea: Minimum scale 1≥ijλ

Summary (localization problem)

subject to 1≥ijλ Eji ∈),(
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Procedure of Minimization

Procedure of minimization (gradient descent)

1. Find an initial set of rotations by optimizing only Rϕ

ε : Step size

Initialization of the Rotations
Rϕ has multiple local minima

Set new cost function

'Rϕ doesn’t have local minima

Find          by minimizing new cost function

: Rotation at iteration l
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Procedure of Minimization

2. Find an initial set of translation and scales by optimizing only Tϕ

Procedure of minimization (gradient descent)

EjiijT ∈≥ ),(1tosubjectmin λϕ

Global optima of                  are not in the feasible set )0( =ijλTϕ

One of the constraints need to be active 1min ),( =∈ ijEji λ

Update procedure

Rotation      : fixed
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Procedure of Minimization

3. Optimize     over all the variablesϕ
Procedure of minimization (gradient descent)

ϕ has multiple local minima Good initialization is needed

Reason of multi-step optimization 

Choice of step size 
In gradient descent, it is important to select
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• Introduction

• Survey of [5]

• Application to our Research

Outline
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Preliminaries

Pose of camera i relative to world frame

Pose of object relative to camera i

Relative pose of the camera i and j

Camera i’s
frame i∑

Object 
frame

Camera j’s
frame j∑

o∑

World 
frame w∑

Object

Given a relative sensing network with reference node1.
The reference frame transformation       for all                are 
uniquely determined.

},,2{ ni L∈

Definition of localization 

Estimated by Visual Motion Observer [8]

:Estimated pose of object by camera i
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Measurement Methods

Relative sensing by cameras

• One camera sense relative pose of 
another camera (visibility graph)

),( EVG =Directed graph

Eji ∈),(Edge               : i measure j’s relative pose

},,1{ NV L=Set of nodes:

• Use object to estimate the pose

Camera i’s
frame i∑

Object 
frame

Camera j’s
frame j∑

o∑

World 
frame w∑

Object

:Estimated relative pose

Eji ∈),(Edge               : j measure i’s relative pose

Attach feature points to camera

Camera i’s
frame i∑

Camera j’s
frame j∑

Camera k’s
frame k∑

Consider undirected connected graph
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Problem Settings

Consider 3 cameras (for simplicity) 1 2 3

What we want to do is minimize the overall cost function

New estimate variables:

Measurements (estimated by VMO):

Close as the measurements

Determine the pose

in a distributed way 

with a constraints 

Cost function

From [7] (Euclidean distance)

From [5] (Geodesic distance)
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Problem Settings

Reparametrization

:Absolute poses

Reference: node1

Rewrite cost function

Constraints (Determine the pose)
The pose of the object       should 
be same, regardless of chosen path 

Close as the measurements

We fix two variables

Decision variables

The solution will be trivial

1 2 3
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Gradient Method

First we consider only orientation

Minimize the cost function

Gradient descent

Calculate the gradient 

Update the estimates

ε : Step size: Estimates at iteration l

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

23

Block Diagram of the Update Procedure

With 2 cameras

Visual
Motion

Observer1

Visual
Motion

Observer2

Update of

Update of

Update of

Future Works

• Test and simulation  

• Settings of the cost function (Interpretation) 

• Consideration of directed graph
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Appendix
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Contributions of [4]

Contributions

1. Formulation of frame localizability

2. Characterization of frame localizability for planar networks

3. Compute least-squares estimate of the orientations in a 2-D ring 
network 

4. Distributed algorithm for planar orientation localization

5. Conditions for orientation localizability in noiseless 3-D 
networks
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Elements of Graph Theory[4]

),( EVG =Directed or undirected graph

Eji ∈),(Edge:

Path P: sequences of nodes

}1,,1{,)(,},,,{ 11 −∈∈−∈= + nmEwwVwwwP mmmn LL

1w
nw2w

i

},,1{ NV L=Set of nodes:

Cycle : 
dG : directed graph

Path from node i to itself without repeated nodes

Cycle vector 

Ex.) 
1

2

3
4

l

1 : orientation is consistent with the orientation of l
-1 : orientation is opposite with the orientation of l
0 : otherwise
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Elements of Graph Theory[4]

1

2

3
4

l

Cycle matrix

k:  Cardinality of L 

for all )(dim fLr =

Fundamental cycle matrix

Full rank matrix and not unique

Set of cycle vectors

Set of fundamental cycle vectors 

Constitute a base for L

Fundamental cycles
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Localization Problem[4]

Sensing graph (Undirected graph): ),( SSS EVG =

Angle-of-arrival sensing

)0()(vers ≠= v
v
vv

Measurement of node i for node j

Sensing range: r

Sensor

ri

Definition of localization 

Problem 6 (Frame localizability)  
Given a relative sensing network with reference node1.
The reference frame transformation             for all          
are uniquely determined by the relative measurements

},,2{ ni L∈

:i’s orientation relative to node1

Remark 8 (Data referencing motivation)
Measurements are taken in their respective reference frames

:i’s position
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Orientation Localizability[4]

Relationships

Lemma 10 (Feasible orientations)
)(vers i

j
i
j pu = )ˆ(exp i

j
i
j

i
j eH α= ],0[ πα ∈i

j

⎩
⎨
⎧

⊥
≠××

=
otherwiseuvectorlengthunitany

uuifuu
i

j

j

i

i

j

j

i

i

ji

j

0
e

)(vers

),(tan2
j

i
i
j

j
i

i
j

i
j uuuua ⋅−×=α

Then all solutions to (7) are i

j

i

j

i

j uR H)ˆ(exp β= :arbitrary angle ],[ ππβ −∈

Compute

(7)

Theorem 11(Orientation Localizability for 2-D) 
Consider a relative sensing network with 2-D and with noiseless 
angle-of-arrival sensing. The following statements are equivalent:

(i) The sensing graph is connected
(ii) The network is orientation localizable
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Orientation Localization with Noise[4]

Consider planer network
We can measure only ))()((proj π++∠−+∠= j

i

j

i

i

j

i

j

i

j npnpy
j

i

i

j nn , :Noise (Gaussian with zero mean and variance    )σ
πππθθ −+= 2mod)()(proj

1

2

3

1

2R 2

3R

3

1R

IRRR =3

1

2

3

1

2

Assign a direction to each edge
If i > j

i j
Get directed graph ),( dSd EVG = Different from sensing graph!

Oriented edge )(),( jiwithEije d >∈=

Enforce cycle constraint and mitigate the noise
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Problem Settings[4]

Cycle error 

±: whether direction of the edge f is concordant with the 
direction of cycle l

Constraints (consistent estimates)

Least-squares estimation problem

subject to for all

: vector of angle estimates for all edges
: estimate of j

ie θθ =

y :measurement vector with j

ie yy =

Let
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Estimation Algorithm[4]

Arbitrary network dG

Subset of the cycle set: : estimate of edge e

Cycle-distributed system

Theorem 18 (Exponential convergence of iterative estimation algorithm)

The solution of cycle-distributed system with             converges 
exponentially fast with factor                   ,with zero cycle error 
with ))(1/(2 max Fλκ +<

2)1( κρ −=

T

ff CCF= )(max Fλ :Maximum eigenvalue of F

10 <<< κ

ie : i th entry is 1, all the others are 0
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Proof of the Theorem[4]

rLf =)dim(

Fundamental cycles: rll ,,1 K

Cycle error vector

For every loop 

For all loop
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Proof of the Theorem[4]

Consider linear system

Lyapunov function candidate

Define 0)2( 2 >−= rIQ κκ FIA r κ−=

Discrete-time Lyapunov inequality QPPAAT −≤−

))(1/(2 max Fλκ +< rIQP ρ=− 2)1( κρ −=
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3-D Frame Localization[4]

Lemma 19
Consider a network composed by three nodes in 3-D space with 
angle-of-arrival sensing. Pick any one of the three nodes as 
reference. If the sensing graph is the complete graph and the nodes 
are in generic position with generic orientations, then there are 
precisely tow feasible configurations for the three nodes and , 
therefore, the network is not orientation localizable.

1

2

3
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3-D Frame Localization[4]

Lemma 20

1

2

3

4

Consider a network composed by four nodes in the 3-D space 
with angle-of-arrival sensing.
If the sensing graph is connected and there are at least two 
independent loops, then the network is orientation localizable.

Lemma 21
A necessary condition for a network in the 3-
D space with angle-of-arrival sensing to be 
orientation localizable is to have at least 4 
nodes
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Definition of Localization [5]

Definition 1 (Localized network) [5]

A network is said to be localized if there is a set of relative 
transformations       such that, when the reference frame of the first 
node is fixed to     , the other absolute poses    are uniquely 
determined.
For any path l from node 1 to node i, we have 
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Estimation of the Rotations[5]

Rϕ has multiple local minima

Gradient of     with respect to Rϕ kR

∑
→

+−=
ik

iki
T
k

T
kii

T
jkRR RRRRRRR

k
)~log()~log(grad ϕ

)grad(exp)1( )()( lRlRk kk
-lR ε=+

Update procedure
ε : Step size

Initialization of the Rotations

1. Set )0(~)0(,)0( 11 1
RgRIR

ili == Not distributed

2. New cost function
2' ~

2
1

Fji
ijijR RRR∑

→

−=ϕ

∑ ∑
→ →

+=
∂
∂

ik ki
ikik

T
kiik

k

R RRRRRR
R

)~()~(
'ϕ'

RϕFind        by minimizing )0(iR

'Rϕ doesn’t have local minima
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Choice of the step size[5]

Computed in a distributed way

Minimization of quadratic form
2

2
1 My=ϕ pqM ×ℜ∈ py ℜ∈

• Quadratic cost function restricted to a line (direction of the grad.) 
is a parabola

• Maximum step-size is determined by maximum possible curvature 
of the parabola

Related to maximum eigenvalue of MM T

Gersgorin Discs and Gersgorin Theorem

Maximum eigenvalue can be substituted with the maximum of 
the absolute row sum of MM T

Apply for minimizing Tϕ
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Calculation of the Gradient

Consider

SO(3) is submanifold of  

Define

Projection: 

Tangent space: 

(1)

(2)

: Inner product
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Calculation of the Gradient

From (2) and (3)

Directional derivative

(3)


