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Photovoltaic (PV) power generation [1]
Theinstallation of PV generation systemsisrapidly
growing due to concerns related to environment.
Merit
* A clean and environmentally-friend
source of energy

Demerit
« Depending on weather condition and cloud-cover

* Low conversion efficiency
Monitoring [2]

Satellite and ground-based sky imaging tools can
be used to monitor and forecast cloud movements.

Forecast of PV energy production isavailablein

advance.
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Monitoring cloud movements
Robotic camera networks
« Control for agroup of aerial robots[3] )

Positioning and orienting multiple robotic ==
cameras to collectively monitor environment

Maximize aerial robots coverage
¢ Thelearning algorithm for potential game o

Payoff-based Inhomogeneous Partially
Irrational Play (PIPIP) [4]
All-sky imaging [5]
¢ The system includes a camera and
wide-angle lens or hemispheric mirror.

* Analysisof imageis based on the red-

to-blueratio.
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Control for agroup of aerial robots[3]
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Camera networks
» Surveillance
¢ Tracking
¢ Catching speeding drivers
¢ Gathering scientific data

Approach

Minimum information per pixel

Get acost function that represents how well a group
of cameras covers an environment

Obtain a control law by taking the negative gradient
of the cost function

The controller is adaptive to the deletion or addition

of cameras and to a changing environment
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Optimal camera placement
The state of camerai p; € P

— i=1,2-.n
Z 1 2

H _ T cc R
qQ p= [cT,z] seR
Bounded environment 5 R2

_g
(ﬁ: Q Thefield of view B
B = {q/!2% < tans}

We want to control n cameras such that their placement minimizes the
information per camera pixel over the environment.

) info
min —dg
@y .on)€P™ J, pixel
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Single camera
Theareaper pixel F{p, q)
. Derived from the optics of the camera and
mz}n f f (P, Q)‘lﬁ(Q) dq geometry of the environment
g —— —

areg  iofo Inside BB
pixel area

f (p, q) isequal to the inverse of the area
magnification factor (defined from classical

The information per area ¢(q) optics) times the area of one pixel.

A positive weighting of importance  fim @} = ‘bﬁz x {the area of one pixel)
over environment the nres of oo pE
Specified beforehand &=
b : Thefocal length
Require more resolution, thevalue o tgde
of g{g) should be large. B

There are no pixel.
[ alb-2)? forgeB
fleq) = { 50 otherwise
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Multiple cameras

An areathat is observed by two cameras
is better covered than by one camera.

{’ﬁ

Robot i

gnas;

Itisnot twice as well covered
The area per pixel at q

== (gm.q}-')_l o . v

Itisnot use the area per pixel ,but the pixel per area.

We assume that the robots have knowledge of the geometry of Q , and some notion
of information content over it g{g).

n -1
avea _ [ e A prior area per pixel #r & (0, o0)
L (g ’ Arbitrarily vague

-t
A (PL - o Pan ) = _EZ:” ﬁn.c)_‘+w“) N, = {ilgc B;}
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Multiple cameras
The cost function

Hip, - . pa) =th.(pu--- + Py 3( )

The cost function isvalid for any area per pixel function f{z:. ),
and for any camera state space p.

The multiple camera optimization problem

(p1. - .Bp)EPT

Notice that 3 = 0 for all {p1,--- ,pn)

8
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Rectangular field of view

Actual cameras have arectangular change coupled device (CCD) array , and
therefore a rectangular field of view.

The state of camerai 5 = [C;[ Z lbll'r

;- Theyaw angle
The rotation matrix

_ | ocos¥y eimgy
oo, =]
Thefield of view
B; = {gl| B(¥x)g — &) < ztamf)
0 =[6: 62]"

The cost function H({p,, -- - ,Pw) iSthe same asfor the circular case,

asisthe area per pixel function f{p;, g).
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Incorporating pan and tilt angles
¥

The rotation (or yaw) angle ¢

(+) Thefield of view spins clockwise
The pan (or roll) angle ¢¥

(+) Thefield of view sweeps to the left
Thetilt (or pitch) angle ﬂrf
j) (+) Thefield of view sweeps to upward

The state of ith camera Consider two coordinate frames

™ = [ s = o7 o T The camerafixed frame of ith robot {C'F;)
Fixed to the camera, centered at focal point

The global fixed frame {GF)
Centered at afixed origin on the ground

The position of the focal point
o =[x s z]”
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To express vectorsin the C'F;
Rotation matrices

eoay  dngl 0 1 0 0
B=| o owf 0| Hi=|0 cosyf wingf
[} D 1 0 —amy? cosgl
7 O —Il:n#
= 0 1 a
i D eosy]
Totakeapoint xinthe ¢ and expressitin the”F;
Translate the vector by @

— Rotale the vector about zaxisby z/2 ‘ B — ‘1] ; g
— Rotate the vector about x-axis by aa —1

— Rotate the vector through ¢, ¢, and ¢

| Ri(0!, OP, )@ — pi)| i v, v = s s o

Control for agroup of aerial robots[3]
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The four outward facing unit normal vectors of faces of the pyramid
myy = [0 costy —sinty]T ma; = [cos®z 0 — sinfa]”
ma = [0 —coofh — En]T  wu = [coale O —smfy]T

Denote them in ¢7F; frame

The vector from the focal point g to apoint
intheleg qis perpendicular to the normal of
the kth pyramid face.

10
mp Ri(Js29 — m) =0 fa.n=[g ‘IJ
" Thefield of view

B; = {gdmi;Ri{lsag— i} <0, =1,2,34]
The area per pixel function

flpe, )= { :-Ebf |IM7WII)2 th.Bi

Z
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min | 77, a)é(a)d mmmp max(— [ 1i5, 1040100

=H >0 = {4 Theutility function

-

Potential game
Actions
Pan and Tilt angles
JF(p, q) : Derived from the optics of the camera

flo ) = {“(5 I 5z2e — mll)* for g € B; e

Givenz, fim, 4 isacquired
¢{q) : The separation of cloudy from clear sky

Cloud : high
—)

Clear sky : low
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N. Ganset al [7]
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Shannon’s entropy( 7, 8]

The entropy has found wide spread use in information, communication
estimation theory

Maximum entropy can indicate an information rich data set

The entropy i
H(X) =Y plz)log,p{z) Thepixe vaue X,z
reX Discrete random variable

The occurrence probability pfa)

The entropy gives a measurement of the uncertainty associated with X

The random variable x is uniformly distributed
mmmm) The entropy tekesits maximum

The random variable x is completely determined

mmmm) The entropy takesits minimum
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Shannon’ s entropy [7, 8]
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In the case of images
The image with asingle shade or color has zero entropy
A blank image such as a camerafacing awall
The image with many shades and colors has high entropy

Example of similar |magi£W|th different entropy levels

TPl

Poor lightning condition

Entropy High Low
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N. Ganset al [7]
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+ | Each camerais controlled
/| such that entropy is maximum

Each camera monitors
boundary between cloud and
sky

We can know the size of cloud

Thefield of view
Zero entropy

NP Not zero entropy
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Application of PIPIP
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Shannon'’s entropy Image
H(X) =~ 3, a)logplz] 01010101010
0(2|2|1|1|0
‘Wewanttomaxlmlzetheentropy 0|2[4|4[3]0
Lo[2]s]2]3]0
m(_ Zp(:)m(x)) Pixel value 0j1]1]1]3]0
&= olofofofofo

=[F; Theutility function

& N -

Potential game

Actions
Pan and Tilt angles

p{x): Acquired from the image
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» Formulate acost function for single camerawhich has a
circlefield of view

» Formulate acost function for multiple cameras which have
acirclefield of view

¢ Single camerawhich have arectangular field of view
¢ Incorporating pan and tilt angles

» Study of Payoff based Inhomogeneous Partially Irrational
Play (PIPIP)

« Study of the monitoring of cloud with Shannon’s entropy
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FutureWorks
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¢ The separation of cloudy from clear sky
Imaging processing
The threshold in the red-to-blue ratio [5]

¢ Modeling in the case of singe camera (six degrees of freedom)

[: 3, 2, %7, "’i-r ¥

* Modeling in the case of multiple cameras (six degrees of freedom)

« Compose experimental system

FutureWorks
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Experimental system[6]

Projecting movie of the sky on the ceiling

Wireless connection

L

3
®

Control
commands

Control

commands
Images

Projector

Images

L)
Pan and Tilt camera
PC
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Appendix
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Decentralize gradient based controller (Multiple cameras)

Theorem 1
* Thelateral component

a _ a6
Dot~ Joran 0 T Pt g e A

Theintegral component causes the robot to move to increase the amount of the
environment in its field of view, while also moving away from other robots j
whose field of view overlaps with its own.

+ Thevertical component
B B 2h%
B = ] o~ s laomty— [ 5ok

Thefirst integral causes the robot to move up to bring more of the
environment into its field of view.

The second integral causesit to move down to get a better look at the

environment aready initsfield of view.
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Control for agroup of aerial robots[3]
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Decentralize gradient based controller (Multiple cameras)

Use _agradient control law in which every robot follows the negative of its own
gradent component The control input for robot i m;

5= _EE Control gain & & {0, 0a)
Assuming integrator dynamics for the robots

Pi=u
Theorem 2
8K .
'l_ig;=u Yie {1,---,m}

An equilibrium gs?, ... 2} defined by g— =8 ¥ie{L--.n}
eq o, l) o -
is Lyapunov stableif and only if it isalocal minimum of .
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The gradient function of the cost function
(Rectangular field of view)

« Thelateral component

M _ < .
o E fw_("x. = B HRE(E) maad{g)dg

* Thevertical component
a3
B 3 e D e
=17

2h,
fw‘_ _'_Mi e a)dg
* Theangular component

The component rotates the robot to get more of itsfield of view into the environment,
while also rotating away from other robots whose field of view intersectsits own.
[
oM
3= e hsea) (o= " Rl + 5/2) s
P
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Control for agroup of aerial robots|[3]
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The gradient function of the cost function
(Incorporating pan and tilt angles)

4 -
= [ Ohe s e olas

o3, (fasg — g}

 f o 3 Thaze AP [Taza— a0
I wh (e — Fag)
B =L ), (o ) g o€ ]

Where

or gy et @ or, [V P a
ﬁ-m[—?ﬁr o g]nf m-m[g s o |
OB —nigf © —oof
B[ 5 s ] a

Thelearning algorithm for potential game [4]
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Payoff based Inhomogeneous Partially Irrationa Play (PIPIP)
Features
¢ Finite and alittle memory

» Payoff-based

« PIPIP allows agents to make irrationa decisionswith a
certain probability

* PIPIP assures that the actions of the group converge in probability
to optimal Nash equilibria, though only convergence to pure Nash

equilibria 1

Optimal Nash equilibriaisthe Nash equilibria maximizing
the potential function.
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Thelearning algorithm for potential game [4]
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The set of agents y = {1,--- , =} Theiteration ¢ = {@,1,2,---}
The collective action set A, a

A=A x---x An A; ie V: Theset of agenti’sactions

a={(a;0_;) a; : Agenti’saction
G = (“‘-!' hRFY . FEETY - EE P :ﬂn)

The set of actions R {(a;) : The set of actions which agent i will be takein
case hetakes an action &

The utility function of agenti g, - A - R
The potential function ¢ : 4 — R
Constrained potential game T = (¥, A, {Uihicvr {Rskicv)
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Thelearning algorithm for potential game [4]
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Definition (Constrained Potential games)
A constrained strategic game T is a constrained potential game
if 36 VieV Ya; € A V! € Rifa;) Va_, 11,4,
Uila},a_i) — Uilai,a—;) = da}, a_;} — dlai,a—i)
If an changes his action,
(The change of the utility function)
— (The change of the potential function)
Definition (Constrained Nash Equilibria)
For constrained strategic game T, acollection of actions
is aconstrained pure Nash equillibrium if the following equation
Usle}, 6%} = _max Uifoi,0;) iev
Any constrained potential game has at |east one pure Nash equilibrium
A potential function maximizer is an optimal Nash equilibrium

There may exist undesirable pure Nash equilibria not maximizing the potential
function
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Thelearning algorithm for potential game [4]
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Initialization Action ais chosen randomly from 4 {a = md{A))
1=0:a;(0) th{o) 1
t=1l:a)=a{) U{)=Li{0) VieV "e\e-12
Step 1 Update | &=+ =BTy (Exploration rate) |
D =max®; Iy Theminima number of steps
Step 2 » Usfafz — 1)) > Uifafz —2))
at™® md(Ri{as(t — IY\{ai{t —1)}} wp.e
aift — 1) wp.l—¢
« Otherwise Upla(t — 1)) < Usloft —2))
md{Rfos(t — D)\{olt — 1, aili —2)}} wp e

o T { a(t—1) wp. (1 —e}{m-£>)
a;{f —2) wa {1 — e}l — x- ™)

Step 3 Executethe action a™¥ and receive If;{a®™)

Step 4 aufe — 1) — ™ wlt —2) —mild — 1)  Uy(aft 1))« Ty{at™P)
Uilelt — 2)) — Uilalt — 1)) Aq — Uila{t — 2)} — Usle(l — 1))

Step 5 ¢« #+ 1 and goto Stepl ﬂ
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G = mox 1mux | Ri{as)|




