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Introduction

Visual Sensor Networks [1]
Networks consisting of spatially distributed 
smart cameras 
• Applications

- Environmental Monitoring - Surveillance 

- Target Pose Estimation    
- Camera Localization   

z

• Tasks and Problems

It is essential to develop the tools for 
automatically analyzing and integrating the data. 
Distributed algorithms have been developed for the following reasons

Distributed Algorithms [3,4]

- Network capacity 
- Fault tolerance    

- Resource constraints 
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Introduction

Distributed Algorithms in Visual Sensor Networks [3,4] 
Multiagent systems [5,6] and Cooperative control [7,8] 
provide useful methodologies

Cooperative Target Pose Estimation [9,10]

Consensus-based Camera Localization [11]

- All Localized Cameras 
- Averaging of pose estimates 

To present a simultaneous target estimation and localization
algorithm based on distributed optimization [6] in SE(3)

Objective of Our Work

- There is no meaning of the camera pose 
which minimizes the cost function 

- Gradient descent optimization in SE(3)
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Problem Settings (Summary)

• Camera Set

- Localized Cameras
- Unlocalized Cameras

• Measurements

• Communication

Camera i can get j’s info.

- Localized Cameras

- All Cameras

Visual Sensor Networks

i

Target

o∑

World Frame
w∑Camera i

Camera j

i∑

- Communication Graph
- Neighbor set
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Objective

Target Estimation Problem (Averaging)

: Estimates of target pose
Localization Problem 

Achieve the following requirements simultaneously
• Target Estimation of All Cameras
• Localization of Unlocalized Cameras

Objective

(1)

(2)

Find x, y s.t

Find x s.t
where

and

Easy Ex.

Given                         , 
find                  which satisfy (1)    

Find
which satisfy (1) and (2)

: Average of target 
pose measurements

Estimates
Average
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Estimation and Localization Algorithm 

Syn
c.

term

…

Syn
c.

term

Gra
d.

term

…

Gradient descent of

Pose sync. [12]

Neighbors Neighbors

Estimation and Localization Algorithm

Localized Cameras Unlocalized Cameras
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Assumptions (Averaging Performance)

Assumption 1 (Communication Graph)

Assumption 2 (Target Pose)

• The Target is static.

The relative angle between average and target pose is 
smaller than 

The communication graph                  is fixed, undirected and 
connected.

• There exists a pair                       such that

•
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Lemma1

where

Error between average 
and estimates

Maximum error between 
average and measurements

Suppose the estimates          are updated according to the present 
algorithm. Under assumption 1 and 2, if                         holds, 
then for any positive scalar c, there exists a finite time        such that

Lemma 1

Estimates get closer 
to the average
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Sketch of Proof of Lemma1 

Energy function
Estimates farthest 

from the mean

Suppose that

From theorem on Ultimate Boundedness, 
the trajectories of estimates      
ultimately converge to the set satisfying

Case 1:

Case 2:
It isn’t sure the estimates                 ultimately 
converge to the set satisfying (3)

(3)

l

l
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Sketch of Proof of Lemma1 

Consider new energy function

Outside the set satisfying (3)

Consider           exists

The trajectories of estimates                 will 
enter the set satisfying (3). 
But, it isn’t sure the estimates converge
(They may leave the set satisfying (3))

V is continuous but may not be differentiable at the boundary

l

l

Case 2:
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Sketch of Proof of Lemma1 

Consider the estimates                 enter the 
set at t1 , and leave the set at t2

Case2-1:

Case2-2:

l

t2

l

don’t increase

increase, but 
decrease

Case2-3:

l

t1

t2

Again, the 
estimates enter the 
set satisfying (3)

Case2-1

Case2-2 Case2-3

Back to Case2-1
(Cycle)
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Sketch of Proof of Lemma1 

After several repeat from Case2-1 to Case2-3, 
the trajectories of estimates                will 
converge to the set satisfying (3)

l

l
l

Because of                          (Case1) and
, the estimates                never 

leave the set satisfying (3).
(This cycle happens in a finite number)  

The trajectories of 
estimates
finally converge to 
the set satisfying (3) 
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Main Result

Suppose the estimates          are updated according to the present 
algorithm and that the initial estimates satisfy                .
Given any                    and               , under Assumptions 1 and 2, 
if the gain                 is sufficiently small, then for all sufficiently 
large times T,

holds. 

Error between average 
and estimates

Error between average 
and measurements

Theorem 1

We derive an upper bound of the ultimate error between estimates
and the average
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Simulation Movie

Communication
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Conclusion

Summary
• We have defined the target estimation and localization problems 

for visual sensor networks

Future Works
• Tracking performance analysis

• We have presented a cooperative localization and estimation 
algorithm based on distributed optimization approach

• We have demonstrated the effectiveness of the algorithm 
through simulations

• We have shown the averaging performance of the algorithm by 
evaluating the error between the estimates and the average pose 
of the target 
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Problem Settings

Pose of camera i

Pose of target (object)

Localized Cameras

Unlocalized Cameras

Target
o∑

World Frame
w∑

Camera i ??

Camera j

Pose of target relative to camera i

Camera Set

i∑

Pose Representation
Exponential Coordinates

: axis
: angle

Homogeneous Representation
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Problem Settings

Communication Graph 

Neighbor set:

Camera i can get j’s info.

Measurements

Camera i

Target o∑

World Frame
w∑Camera i

Camera j

i∑
Pose Average

All Cameras
Localized Cameras

Pose Average
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Simulation Settings

Target pose measurements

Average of target pose

Initial Estimates

1 2

3

45

Camera Settings
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Simulation Results (Target Estimates)

Target Orientation Estimates

If the gain k is sufficiently small, the estimates are getting close to 
the average. 
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Simulation Results

Camera Orientation 
Estimates

Energy Function

The Camera estimate depends on 
the gain k.

Theorem1 is satisfied. 
Estimates are close to the average.


