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Visual Sensor Networks[1] P

Networks consisting of spatially distributed &,N :‘3 7
- mijl
o

smart cameras
» Applications
- Environmental Monitoring - Surveillance
¢ Tasksand Problems
- Target Pose Estimation !
- CameraLocalization Ei%..
Distributed Algorithms[3,4] il
It isessential to develop the tools for
automatically analyzing and integrating the data.
Distributed algorithms have been devel oped for the following reasons
- Network capacity - Resource constraints
- Fault tolerance
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Distributed Algorithmsin Visual Sensor Networks[3,4]

Multiagent systems[5,6] and Cooperative control [7,8]
provide useful methodol ogies

Cooperative Target Pose Estimation [9,10]
- All Localized Cameras
- Averaging of pose estimates

Consensus-based Camera Locadlization [11] ® o
- Gradient descent optimization in SE(3) & a
! Ll
- Thereisno meaning of the camerapose ¢ =~ -# = '
which minimizes the cost function N T e

Objective of Our Work

To present a simultaneous target estimation and localization
algorithm based on distributed optimization [6] in SE(3)
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Problem Settings (Summary)

Visual Sensor Networks
e CameraSet V:={1,---,N}
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g‘ Target @

- LocalizedCameras ViCV |V >2

- Unlocalized Cameras vV, = V\V, "“f"
\VI: R 0,

\

¢ Measurements

~ ’//

- All Cameras Gio iey  Camerai

. Wz;rIdFrame
- Locdized Cameras  fuoi = Guwidio i€V

e Communication

o S § .C;i
- Communication Graph G = (V, &) .\ Z
/a?

N
\

- Neighborset ;== {j € V|(j,i) € £}
Camerai can get j'sinfo. i ¥y

T
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Objective

Objective
Achieve the following requirements simultaneously
» Target Estimation of All Cameras
» Localization of Unlocalized Cameras
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Target Estimation Problem (Averaging)

Guwaoi = 0~ iev (1) Juwoi : Estimates of target pose
Localization Problem g" : Average of target
Gt Guoi =80 lieVe (2 pose measurements
/ Ex,

Find (.rffl'-'-'}t'GVr {.{)jlll -.|-§ir'F)iEV‘. Y
o which satisfy (1) and (2) St'méf;'ji‘,,ln

Given gui = Gwoid;, Findx st = =
find (uwsi)iey which satisfy (1) where b/
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Estimation and Localization Algorithm
——— Tokyo Institute of Technology
~ Estimation and L ocalization Algorithm N

Guwoi = Jwoilli Gradient descent of (7, e;Gwo:)

ke ER(Guaiduwo) + ks Y Br(Guniduei) i€V

= JEN:
= L,
ke D ER(GogiGucs) eV,
JEN;

- T o \v T
. Posesync. [12] [E““”::[P (e | ]

Gui = Juoil;, éoy _ Lo éo_ _éo
L sk(e )—2(6 e ) ke, ks >0 )

Locaized Cameras |i € V,

Unlocalized Cameras i € V,

i f’“"’f = Jwoi Jio - Jwi
Guwoilli []

i| Guwoi = Jwoi

Guoilli

Neighbors Neigﬁbors
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Assumptions (Averaging Performance)

Assumption 1 (Communication Graph)
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The communication graph G = (v, €) isfixed, undirected and

connected.

Assumption 2 (Target Pose)
» TheTarget is Static. (uwoi = 0 Vi € V)

» Thereexistsapair (i,j) € Vi x V; suchthat guwoi # guwo;

Lemmal

Lemmal
Suppose the estimates g,,.,; are updated according to the present
algorithm. Under assumption 1 and 2, if g &#=«gf#" = nwe >0 holds,
then for any positive scalar ¢, there exists afinitetime «{g) such that
Be=8 0oy < e~ Elvor) ¢ VB T(e) €W
Error between average  Maximum error between
and estimates average and measurements
where h:=arg max ¢(e’éﬁ‘e£§“"”)
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N

J

e e v 8 ‘(‘*gg’”’)fev S (e87wei ey ]

. & =0 Viey 2 o Estimates get closer
The relative angle between average and target poseis ™ 4 ol © to the average
smaller than =/2 _ ! _ !

le€0 (e50woi)icy e o (e5Pve)iey O i,jew
o ) ° O ijev,
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Sketch of Proof of Lemmal Sketch of Proof of Lemmal
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, i\j i\j . . (SFeen),
En‘ergy function - O lijev 8,’)1 €Vu Consider new energy function A o :
U := (e 8" efwer) Estimates farthest S " _é0* Eu —é0* Fuun o
— —€0" €0,y fromthemean S U<0 = Z(¢(e ehre) — (e ¢ )=¢)
I(t) == argxlneagcqﬁ(e esfver) O\ /) e o o -
Casel: leV, A= {0 )iev|d(em " e uet) — g et uer) > ¢} le€0 (60 )icy
Suppose that ¢(E§’f€* eféwx) _ (/)((;éa*es_éwoy,) >ec & o ey - Outside the saé%{sfying (3) | 0As OA'
Ev S 7(}]{.(‘ <0 Al = {(€ )iEV, € A} Au = {((’ v )iGVu € 1\}
From theorem on Ultimate Boundedness, V is continuous but may not be differentiable at the boundary
the trgjectories of estimates Fefeo )iy, (7 )iev Case2: 1€V, A (o) iey
ultimately converge to thgset satisfying s o 1) Consider i€ &, exists V< —k.|Ayfe < 0 o /olh
o —E0" E0uoi —£0% L€0uon . s
Blem o) < g(e ¢ )+e iew (3) The trajectories of estimates (e’ )iy, will i :
Case2: 1€V, U<0 T<0 & oo, enter the set satisfying (3). e () e
Itisn’t sure the estimates (¢7«= );cy, uUltimately | But, it isn't sure the estimates converge | o
converge to the set satisfying (3) :f . (They may leave the set satisfying (3)) Chw | ¥ <o
Fujita Laboratory
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Sketch of Proof of Lemmal
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] i (€)iey o
Consider the estimates [¢&7+),cy, enter the Al
setatt,,andleavethesetatt, Lod
Case2-1: t; <t<ts A =0 V<0 K

B(e=€ ¢fPwer) i€ A, don'tincrease 0 \fiit‘ (e )iey
Case2-2. 17 <t<lly+e 2
s 2n . . A..O OI
Ple ¢ etwery e A, increase, but 1 < 0 X
sre B2 Case2-1
=D éle " ef?) i€ A, decrease l ) t
Case23 r3mwe | @ e aa
Again, the e P 0 —
estimates enter the ty
set satisfying (3) »
i o
Back to Case2-1 oy, "‘""\OI A Ay Ol
(Cycle) Case2-2 Case-3 m
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Sketch of Proof of Lemmal
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EPuos). )
€
( )iev (eFwei)icyy

After several repeat from Case2-1to Case2-3, _
the trajectories of estimates(e***)icv, Will e
converge to the set satisfying (3)

Becauseof [ < 0l € A; (Casel) and
r<0le Va ,theestimat&sW
leave the set satisfying (3).

(This cycle happensin afinite number)

@ T(Engw )1€V (eféum )ZEV

éo* .
Thetrgectoriesof g
estimates (¢« )y,
finally convergeto
the set satisfying (3)
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never A

i€V

650‘

eV eV,
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Main Result
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~Theorem 1 ~
Suppose the estimates g, . are updated according to the present
algorithm and that the initial estimates satisfy ¢—&0wei (0)ef?” > 0 .
Givenanya > [V,|/[Vi| and e € (0,1) , under Assumptions 1 and 2,

if thegain % = . /k, issufficiently small, then for all sufficiently

largetimes T,
1 5112
¥ 2 Pwoi = 97 < M N ol
i€V i€EV)
Z¢ —é0° jéi m)< - ‘ fl)'f+az¢ _éo* ééw)
V puh S —
V" Error between average SV Error between average
and estimates and measurements

Bi=1- \/Q(qb((%*é"'reg”-l-"»") +¢) holds.

S J/

We derive an upper bound of the ultimate error between estimates

and the average . 13
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Simulation Movie
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Target Measurements

Communication

Unlocalized Localized

Camera ‘ Camera
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OiEV[
Qiev.

Conclusion

Summary

* We have defined the target estimation and localization problems
for visual sensor networks
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* We have presented a cooperative localization and estimation
algorithm based on distributed optimization approach

« We have shown the averaging performance of the algorithm by
evaluating the error between the estimates and the average pose
of the target

« We have demonstrated the effectiveness of the algorithm
through simulations

Future Works
¢ Tracking performance analysis
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Problem Settings
Camera Set @\ Targety ¥

ieV:={1,---,N}
Localized Cameras
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i€VL=W\V Y s
Pose Representation World Frame

Pose of camera i‘ Exponential Coordinates

Guwi = (pwire*’) € SE(3) £ui € B® : axis
Pose of target (object) #.: € R :angle

Guwoi = (Puwoi, €5050) Homogeneous Representation
Pose of target relative to camerai i po

Gio = Gipi Guoi i [ 01 }

Tokyo Institute of Technology.

Problem Settings

M easurements
All Cameras ;. i€V
Localized Cameras
Gwoi = Guilio 1€V
Pose Average 4" = (p",¢*")

Tokyo Institute of Technology

g i=arg min Z 4,:(9"!]"_”.)
qESE(3) =
1 J(',h

U(g) = §lel2 + p(e?) World Frame

6(e?) = tr(I5 — )
Communication Graph G = (V, &)
(j,i)eECVxV

7

N

Camerai can getj’sinfo. ] Pose Averag;‘e

Neighbor set: A := {j € V|(j,i) € £}
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Simulation Settings
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Camera Settings i€ V:={1,---,5} ! diam(G) = 2
Qievi={1,23 QieV.={4,5) 3| woi
Target pose measurements 5 4
-0.3 -0.2 -0.6 ]
Puwot = 0.6 | ,Puoz=| 05 |.,Pus=| 04
1.9 1.6 18 |
0.3 0.4 0.25 ]
Buor = | 02 | ,&0uor = | 0.15 | ,E0uwoz = | 0.25
0.3 1.2 0.15 |
Average of target pose
—0.3667 0.3168
p =1 05000 |,&" = 0.2002 |:> B =0.7937

1.7667 0.2168

T =
Initial Estimates  puoi(®) = [0 0 1] ¢feei(o) =15 o
Tokyo Institute of Technology

Simulation Results (Target Estimates)
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Target Orientation Estimates ¢&0wor
ke =1k =1(k=1) ke = 1,k, = 50(k = 0.02)

First Elements of Orientation Estimates First Elements of Orientation Estimates
5 2 : : 035

0.3
0.25 1
0.2t ; |
0.15 =Cameral |—Cameral
=2 Camera2 |~ Camera2
0.1} ~Camera3d| |~Camerad
Camerad Camerad
0.05 ~Camera5 |~Camera5|
! =-Average | o |=-Average |
% 5 15 22 0 5 15 20

10 10
Time [s] Time [s]

If the gain k is sufficiently small, the estimates are getting close to
the average.
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Simulation Results

Camera Orientation L
Estimates La‘fe‘“"
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Energy Function %

PR = Z ¢(e’é9‘61£‘§‘”“') a=0.7> & le =0.01
iev Vi

First Elements of Orientation Estimates Orientation Error Energy

1

k=1 | =k=1
—k = 0'02. oA o —k = 0.02
G'SI ooz
L 1 —(1—¢)3 +ﬂm
B ¥ PR
o4 oo [Vil
0.2 s |
W ws w5 w
Eo) 5 i0 5 n % s 10 5 20
Time [s] Time [s]
The Camera estimate dependson ~ Theorem1 is satisfied.
the gain k. Estimates are close to the average.
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