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Background Background: Game Theoretic Approach

Multi-agent Systems Leg N e
A system composed of multiple y_z 2 2 TAENIN
interacting autonomous agents -. -
Applications oemeos .

Sensor Network, Robotic Network — \yireless Selection
Power Network (access point/channel) Power Control

Cooperative Control = =
Each agent has decision-making é\@ ®
components with limited local

/1 &
information o s

All agents seek to -
collectively accomplish a

Sensor Coverage Problem  Consensus Problem

gj ey T
global objective E' p
_ /fj‘l,\
Distributed Approach [2] ey
» Game-Theoretic Control [1] - -

Central |ze(_1 ;-\pproach Distributed Approach

Game Theoretic Approach

Interaction between agents = Agents are self-interested
Non-Cooperative Game

The solution of —p The convergence of
the coop. control problem <= the equilibrium of the game
Advantages — .
» Robustness to dynamic uncertainties Uity =t
» Scalability and real-time adaptation
» Reduction of communication requirements
Design

» Utility Design (game design for the optimization problem)
» Learning Design (local decision-making rules)

[ Hierarchical decomposition between these designs ]
Potential Game

» the existence of Nash equilibrium invariably
» Local maxima of (global) objective function are Nash equilibria
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- Strategic Game and Features
- Limitations

» State-based Potential Game
- Framework
- Utility Design
- Learning Design

e Summary

Strategic Game [1]

Players (agents) i e N' A = {1,--+,n}

1. Action (sets) a; € A; A=Ay x-x Ay,
Agenti’saction |a;
Other actions  |a—i = (a1, "+, @i—1,@it1," ", an) € A = HAJ'
All actions a=(aj,a_;) €A J#i

2. Utility function UVi:A=R U={U}iex

(same aslocal objective function)

[ Each agent basically chooses the action a; to maximize the own function U; ]
[option] Restricted Action Set Rt Ai = 2% R = {Ri(a;) }ien
Agent i’srestricted actionset R;(a;)
Assumptions
(Reversibility) Vi € N Va},a? € A; St a? € Ri(a]) & al € Ri(a?)
(Feasibility) Vi € N Val,a}" € A;
Ja} »af > —a" st aleRi(d ), Vie{2-,m}
Strategic Game =< N, AU >
Restricted Strategic Game T',., =< N, A, U, R >




Potential Game (setup)

Game  Strategic Game (Non-cooperative Game)
Objective Functions  Global: Potential Function ¢:.A4 =+ R

Local: Utility Function 1;: A =R
Equilibrium pure Nash Equilibrium

( . . _ N * . .
anactionprofilea* e A st.Vie N Uilaj,a’;) = max (aj,a))
L If each agent changes an own action only, [J; cannot be more increased

Goal Both functions are maximized

In general, each agent just seeks to maximize U;, while might even decrease ¢
Constraint Condition

3¢ St. Vie N, Vai,a; € Ai,Va_; € A_;

Uilal,a_i) — Uilaia_;) = ¢lal,a_;) — dlai,a_;)
Anincrement of utility function  Anincrement of potential function

Boarder definition: Generalized ordinal potential game (OPG)
!",(n’r-.n_,-} =Uilaja_;) >0 = :.)(n;,n_,-] = glag, ;) >0
Any OPG has the finite improvement property

Potential Game (features)
Potential Game
Goal Both functionsT; ,¢ are maximized
Features Uy, Uy i
» the existence of Nash equilibrium invariably Payo,f\fg;n'tz ! Pofgtelnaltzdb
[ ¢ ismaximum | = [Optimal NE | NE_A__B A_B
(global objective) > 2alealeol=al 2 o
4 o N 5
<s0f(a9) <5 0 |4 ]
(local maxima) NE Ont
Learning Algorithm to lead to Opt-NE '

Efficiency of games Thesocial welfare function W(a)
Price of Stebility (PoS)  Pos(9) = juf (max (%) ) <1

are£ () W (aeet)
(the worst-case efficiency of the best equilibrium across all games)
. Wia®
Price of Anarchy (PoA)  PoA(G) = inf ( 1 (a®)

( ui_nl m) < PoS(G)
a*€E(T) P
(the worst-case efficiency of any equilibrium across all games)

Distributed Welfare Game (DWG) [3]
A finite set of resources R Anactionset A; C 2%
Global welfarefunction W(a) =3, . W"({a},) W: A= R
w2V o Ry The welfare function for resource r» € R
[{a}, :={i € N :r € a;} Thesubset of agentsthat are alocatedto r € R

Utility function Ui(a) = 3,¢,, f"(i,{a},) Uit A= R
f={f"{a}s), -, f"(n,{a}+))}rer {a}.cn Thedistribution rule

How the welfare garnered from resourcerr is distributed across the players
Properties: Vi € N,Vr € R,V{a}, CN

() (i, {a},) > 0 (i) & {a}r = f7(i, {a},) = 0 (iii) 3, f7 (i, {a}r) < W"({a}s)

To satisfy (iii) with equality Budget balanced distribution rule
Submodular [5]

A set valued functionV ; 24 — R issubmodular if
W(X)+ W) >W(XNY)+W(XUY), VX,V C 24

Sameas, W'(X) + W' (Y) > W' (X NY)+ W' (X UY), VX,Y C N

Specifications of Utility Design

Utility Design

Desirability » Existence and efficiency of NE
» Budget balance
» Computational Complexity
» Locality of information

Equilibrium | Budget | Tractabl | Informational | PoS(G) | PoA(G)
existence | balanced e Requirement
O (o] Low 12 12

Utility Design
Potential Game

ESU O O
WLU O (@) x O Middle 1 1/2
Svu O O (o] X High 12 12

Limitation Theorem[3], [4]

Consider the set of distributed welfare games with submodular welfare
functions and a budget balanced distribution rule that guarantees the existence
of an equilibriumin all games. The price of stability is < 1/2

Furthermore, if the protocol is scalable and guarantees the existence of an
equilibrium across all games then the price of stability isequal to = 1/2

Specifications of Learning Design
Learning Design
Desirability » Asymptotic global behavior
» Equilibrium selection

» Informational dependencies | ex. PIPIP

» Convergence rates UaEIZ = 1)) L(lj(-lzk_ 2)2)

» Deterministic system :[k'] - L-“"f-"l"“””l

» Stochastic system lim Pk ¢ di B
(Limitation) [7] Jim P(z(k) € diag(¢(I))

Potential Game

Learning Design

System

Theresultin[6] demonstrates that such levels of heterogeneity will
not impact the asymptotic behavior of such learning algorithms.

Network [9,10] Design Structure [2]
Behavior analysis

New Design Structure
Network Structure

dependson &' = (N, E(k))

Environment
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Extension to State-based Potential Game

Motivation
Potential Game (PG) [1]
To build upon existing game-theoretic results to better accommodate a broader
class of cooperative control problems Maximize the functions
State-based Potential Game (SPG)
ex. Sensor Coverage, Resource Allocation @
Minimize their energy for actions Q\V
To use Cost function in application scenarios 6\0
Minimize the functions

SPG Setup [8]
Optimization Problem ming(ai,az,--+,a5) st a; € A, Vi€ N (1)
Action Renewal Law  ai(k) = Fi ({a;(k = D)} jenn-1),x(k): U3)
(local control law: virtual payoff-based) SN
State Transition Rule z(k +1) = F(a(k),2(k)) (deterministic)
or z(k + 1) ~ Pla(k), z(k)) (stochastic)

-~ T= {0, k=1
G Cenerd Form[7] 4y = Fi({a(r) }rer, (@ Frer, aR); U3)

Game Components

. State-based
Strategic Game: PG Strategic Game Note[7]:

( " 1 ) . - -\ Thestateisintroduced asa
F=< N, AU} >| [T =< N AX AU}, + > - 8
v agents ( N ag_ents coordinating entity used to

i action sets improve system level
4 etionsas ﬁ» state sets behavior and can take on a
variety of interpretations

ranging from dynamics for

#={F P} equilibrium selection to the
state transition rule addition of dummy players
F' (deterministic) in agtrategic form game that
P (stochastic) are preprogrammed to
U, local func. U; local func. behave in a set fashion.

(maximization) (maximization)
@(a) potential func.| |®(a,x) potential func.
(welfarefunc.) | | @(a) (welfarefunc.)

J

Learning Design
Utility Design

Utility Design (I1) @ Utility Design (I1) S
ex. =i Residual Energy of agent i Approach State Action /~ ~
(buttery) 2. Ri(ai,z X
o) ) _ o®)
(energy consumption) &X.. r(k+1)
Neighbor Area action set
Ni(a,z) .
(agents informW‘ & Uilalk), z(k + 1))
with communication) 7 alk +1)
Sensing Area consraints z(k+2)
Di(ai, T;) et o
(environmental 4 . F
information) W (q) 3 a Uila(k + 1), 2(k +2))
Action Area e alk +2)
Ri(ai, ) x(k + 3)
6
—— < Fmax g _J
o B ==l Uila(k +2), 2(k + 3))
Game Components Notations for Utility Design (I11) [8]
State-based Ni(k) CN  Neighbor setsof agent i A;(k) := {j € N : (i, j) € £(k)}
( Stre_lteglcl GaTme e ; SPG ~N E :( ()r:_.") €. (finite) State (space)
r:<‘.\--4 fl‘{{;}‘*> 1“‘:<-\ ‘tll-'-l‘{'h}-ﬂ> v=(v1, - -,v,) € R" Theprofileof values |v; € V;
;\1 ﬁﬁgﬁﬁs : :iez ‘SI, ey e=(e1, -, en) The profile of estimation terms

X state sets A =11 = actionsets

IT control strategy set

+={F, P} «={F,P}

state transition rule state transition rule
F (deterministic) |F" (deterministic)
P (stochastic) P (stochastic)

U; loca func. J; Tocdl func,
(maximization) (minimization)

®(a, ) potential func. &(r,a) potentia func.
\__¢la) (welfarefunc) ) | = 4(a) objectivefunc. )

Learning Design Utility Design
Utility Design Learning Design

(ef,---,e’) € R*  Agenti'sestimation for the joint action profile
(a={(ie) €A Action (change terms)
(

0= (01,---,0,) € R" Thechangein the profile of values

e=(e1, -, én) The change in the profile of estimation terms

é = (é},---,é") € R"  Thechangeinthe agent 7’s estimation

éfﬁj eR The estimation value that i passesto J regarding to the value of &
L e, =0VigN,keN

Jilr ) Utility Function ®(x.a) Potential Function ¢(v) Objective Function

4= |fitisavector variable, do transition rules hold?

» How is the change of values and estimation terms calculated actually?
&= »|sthe objective function ¢(v) equal to the welfare function?




Utility Design (I11) N3
ex. Based on [8] —agentre N \
Output f-|state x, € A,

'I value vr

L]
Jﬂvr

estimation terms €,

1.0
e,

Il

State r=(v,e) - o
a—=v /-| action a, € A, N
T —e change of value 9, change of est. terms €,

Action « = (©.¢) -

N Iti_sposblethalthe = - - -

(=) e - o= "

St e 2 AR GGONG

& ———

Functions for Utility Design (111) [8]

Estimation profile

Initialization i 0 otherwise

o ={ " e

constraint Yiever(t) =n-ve(t) VE>1LVEeN
State transition function
Action value fila,a) =vi+ 0
Estimation value  f{x(z,a) = ef +ndfo; + &
Estimation error =2 en i — Yen: €
Cost function Ji(r,a) = JP(x,a) 4+ a - Jf (x,a)
Jzo('rv a) = ZJE.‘\.', q’(‘:;v ) f’}')
‘Jf(.r,a) = E,-E,v‘ Z/;g/\f(éf - €§)2
where & = (i1, &) = Fix,a)
Potential function Pl a) = %(x,a) + o - Bz, a)
@9(2,0) = Dien ek, 27)
°(2,0) = § Vjen Ljen: Lren (@l — )’
Note: the other expression about J; (-, -) exists[9]. They are two different things.

Theorem about Utility Design (I11) [8]

Theorem[8]
Suppose the objective ¢(-) and the designed communication graph G = (N, &)
satisfies at least one of the following conditions
(i) ¢(-) isconvexover YV c R and G isnon-bipatite
(i) ¢(-) isconvex over Vv c R* and n = [N isodd
(iii) ¢(-) isconvexover R* and 3Ji,j €N, |Nj| # N
Then the state action pair [, «] isarecurrent state equilibriumin |G/
if and only if the following conditions are satisfied: «(k + 1) = F/x(k), a(k))
(& Vaueprofile: v isan optimal solution for the problem(1)
(b) Estimation profile: ket = o, Vi,ke N
(¢) Changein Value profile: [o; =0, Vie N
(b) Changein Estimation profile: \Ef =0, Vi,k e N (balanced)
Note:

1. A non-bipartite graph is a graph that contains an odd-length cycles

2. Each V; isconvex set

3. In case of the time-variant connected communication graph G (t) = (N, £(t)),
if the condition (i) is satisfied, thetheorem holds.  w(k + 1) ~ P(x(k), a(k))
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» State-based Potential Game

Utility Design
Network Structure
Learning Design

- Learning Design [7]
e Summary

Game Components

State-based
Strategic Game
(T =< A", A X {Ui}, 5 >)
N agents
A action sets

X state sets

#={F,P)

state transition rule
F (deterministic)
P (stochastic)

U; local func.

(maximization)
®(a, ) potential func.
L ¢la) (welfarefunc.)

Learning Design
Utility Design

Learning Design: Binary Log-Linear Learning [7]

71) Oneplayer i € N israndomly (uniformly) chosen. a—;(t) = a_;(t — lf
2) Select onetrial action @; uniformly from Ai\{ai(t — 1)}

3) Select action from the following actions with probability 3 > 0
eBUila(t—1))

tmp Gt =1), WP SrEET) § PUKaa 1)
i eBUi(ai,a—i(t-1))

ai, W.p.

eBUi(a(t=1)) y oBUi(ai,a—i(t—1))

SF)Cfl) Choose randomly aplayer i € A/ with probability ¢ )
>0, Yienti <1, g0=1-3c\q >0
Note: There are the cases where no player is selected
2) 3) If aplayer i isselected, select an action in the same way as PG
Ui(a(t — 1)) = Uila(t — 1), 2(&)
4) Theensuing state z(t + 1) is chosen randomly according the transition
probability P(a(t),z(t))
Note: In terms of the process of the proof, it is hard to use
_ the deterministic transition function F'(a(t), z(t)) )
Note[7]: Reversibility isnot satisfied in our setup




Learning Design and Constraints [7]

Theorem[7]
Let I = {N, A4, X,{U;}, P} beanordinal state based potential game with a
state invariant potential function ¢: A — R that satisfies the following three
conditions Va € A,Vz € X
(i) Theaction invariant state transition process P(a, -) is aperiodic and
irreducible over [¥(a)
(i) VieN,Va, € A; Ui(ah,a_i,z) — Ui(a,z) < ¢(al,a—;) — ¢(a)
(iii) Vi e N,Vaj € A;,32' € X(a) s.t.
Ui(aj, a—i,a") = Ui(a,a') = é(aj, a—i) — ¢(a)
For such state-based potential games, the process log-linear learning
guarantees that an action state pair [a*, z*] is stochastically stable if and

only if the action profile ja™ = arg max #(a) and gate z* = X(a*)
(i) and (iii) provide arelaxation to the PG structure by relaxing the equality constraint

conditions (i) Regular Perturbation o, Binary: Resistance of transition
(i) Resistance and #(= W) (jii) Resistance of feasible transition path

-~ When each agent selects an action which depends on the current state, it is
logically impossible that he select (go back) the previous action which depends
. on the previous state from example of Utility Design (I1).

[Appendix] Aperiodic and Irreducible &3
a
-t A
T 1 o . I a' = F(a,k; U;)

1 . ¢ State-based BLLL

L] L] L) L L] L) L] L] L] L] m or ‘Al\{n’l}

o oo | 1 Restricted State-based

. . d : Ri(ai,z) Feasibility over |4
X(a)

P(a,-) Condition (i) in Theorem[7]

Outline

e Summary

Summary

Conclusion
» Limitation of Potential Game
» Framework of State-based Potential Game

Future Work
» State-based Learning Design
- extension to PIPIP (meaningless?)
- application to payoff-based algorithm (lead to Optimal Equilibrium)
a;(k) = Fi ({a;(k = 1), Ulalk — 1), z(k)) }, x(k))
» State-based Potential Game
- strictly framework (practical usability)
» Application: State-based Utility Design
- [Target] Robotic Network, Power Network, (Camera Network?)
- [Scenario] coverage with collision avoidance,
resource allocation with environmental change,
wind farm optimal control [11]
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Appendix

Welfare Function and Potential Function

Utility Function  Us(e) = > f" (i, {a}.)

rEa;
Easiest Distributed Rule ~ 1/;(a) = %um
Equally Shared Utility (ESU)

1 .

i, ) i= =—————W"(a) Ingeneral, such adesign cannot

) Yjen Hr € a5} & guarantee the existence of an equilibrium
Wonderful Life Utility (WLU)

[T {a}s) = W"({a}r) = W ({a}:\{i})
Uila) = Wia) = W(b,a_;)

|7{-} The usual indicator function

o) = Wia)
(not budget-bal anced)

> 17 {a}) < W' ({a}y)

Shapley Value Utility (SVU) N
[ {a}r) = s(W7(S) = W (S\{i})) ola) £ Wa)
o sg{gﬁe:} ' (budget-bal anced)
b, .= ({akel = K|S - 1)! > (i {ak) =W ({a})
T Hal}.[! ien

Utility Design (1) Priority-based distribution Rule [3]

Equilibrium State-based Nash Equilibrium
[[a*7Z*] st.Vie N Vo' ~ P(a*,2*) Ui(aj,a’;,a") = r:T\Gaj. { '.-(“I-G'_,‘:ir')]

Constraint Condition of SPG
J¢p(a) st. Y[a,z] € Ax X,Vi € N,Vd, € A;
f'.(rr:,n_;,.l‘] = Uilaga_j,z) >0 = r_'J[n:,u_,:} —glaga_;) =0
Concept WLU+SVU (+state-based)
Utility function 17:(a’,#) = Epar .y Vila', 5
Vila,2) = 30, e, W ({Zi}r) = W ({7i},\{i}))
(&} = {j €N 2} <af}
Firstinfirst out (FIFO) a(t) =a(t—1) = z(t+1) =x(t)
Theorem[3]

Consider any distributed welfare game with submodular welfare functions,
priority-based utility functions, and FIFO state dynamics. The resulting game
is a state-based potential game with potential function ¢ = 11" and a price of
stability is 1. (Note: this design also satisfies budget balanced)

Definition of State-based Equilibrium [7]

State Invariant Equilibrium

An action profilea* isa state invariant equilibriumif i € V,Vz € X
Ui(af,a* @) = max U(ai,a* ;,2)
a; i

Recurrent State Equilibrium
(" The action state pair [a*,z*] isarecurrent state equilibrium
if the following two conditions are satisfied:
(i) VieN,Vze X(a®,a") Uila",z) = maxUi(aj,aZ; )
L (i) Vz e X(a*,2*) z* € X(a", )
Notation
X(a° 2% = {2°, 2,22, -} C X where "1 ~ P(a®, %) Vk € {0,1,---} ]
-

or gttt = F(a, 2%) Yk € {0,1,-
the set of reachable states by an action invariant state trajectory for [a”, 2]
~ Thestate is selected randomly according to the probability distribution P(-, -)
P(a,z) = {2’ € X : 2’ ~ P(a,z)} Theset of statesin the support of P(a, )

e

= When we express an equilibrium in the SPG, using “Nash” is strange.

Definition of State-based Potential Game

[7]( A state based gameT isan (exact) state based potential game if there
exists a potential function ®(-, -) that satisfies the following two properties:
Va € A,Vz € X(a)
(i) Vie N, Va; € A Ui(al,a_;,z) —Us(a,z) = ®(a},a_i,z) — ®(a,z)
(ii) Vz € P(a,z) ®(a,z') > ®(a, )
Ordinal SPG (i) i Ui(aj,a—;,x) — Ui(a,z) > 0 = ®(aj,a_;,x) — ®(a,z) >0
Complete SPG VYa € A Vz € X(a) K& V[a,a] € Ax X
Lemmal Arecurrent state equilibrium existsin any Ordinal SPG I
[8]( A (deterministic) state based game T is a (deterministic) state based
potential game if there exists a potential function ®(-, -) that satisfies the
following two properties: Va € A,Vz € X(a)
(i) VieN,Va} € A; Ui(a,a_i,z) —Us(a,x) = ®(a},a_i,z) — ®(a, )
(i) V[a,2z]€ AxX ®(a,x) = ®(%0) where = F(a,z)

Proposition| Given a (deterministic) state based gamelr' , if a state action
pair [z*, o] Satisfiesfor a* = arg m(?x@(z*,a) and
" = F(z",a") then its pair a recurrent state equilibrium.

[Appendix] Proof Method of Stochastic Stability

(Perturbed) Markov Process {P{} ({Ff})  over afinite state space X
Transition probability P, from z € X tofy € X aongwith {P;}

A family of stochastic processes { P } is aregular perturbation of {P}} if
(i) 3" >0,Ye € (0,e"] st. {Pf} isaperiodic and irreducible
(i) Vo,y €X st Tim P5, =Py,
=0

=

(ii)) Be, P, >0 = 3x(e—y) €Ry St lim € (0,00)

__
—0 ex(z—y)

Theorem H. P. Young
(assumption)  {P;} isaregular perturbation of {P;}
(i3 ;E,'éh, u(e) and the limiting distribution 1(0) is a stationary distribution of {P;’}

(ii) the stochastically stable states are contained in the recurrent
communication classes with minimum stochastic potential

Theorem Freidlin and Wentzell
(assumption) P isanirreducible Markov processon X’

Its stationary distribution p has p(x) = %Where'/(z) =3 P
wer v(w Ter




