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Introduction : Power Networks

manage customers consumption of electricity
in response to supply condition

Demand response

help reduce peak-energy demand and
adopt demand to fluctuating generations

Power Network

Integrating renewable energy

Efficiency
minimize energy loss (Optimal power flow)

A network which connects generations
to loads

DoE, Smart Grid Intro, 2008

sustainability, available worldwide
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Current [A]:Voltage [V]:

Preliminaries [5]

Power [W]:

active power : reactive power :

Admittance [S]:

+
-

: bus admittance matrix
• symmetric
• = the sum of admittance 

to the ith node
• = the negative of admittance 

between node i and j

+ +

--

Impedance [Ω]:
,
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Integration of Renewable Energy [1]

Renewable energy’s output fluctuates widely and randomly
It is difficult to integrate them
Energy storage

Battery level

Power flow

demand

battery
generator

[W]

[W]

[W]

Line capacities

Demand 

Generator

: generator

: demand

: voltage phase at node i
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Optimal Power Flow with Energy Storage [1]

,

generation cost battery cost
s.t. (1), (2), (3), (4), (5), (6), (7)

cost

[W]Demand doesn’t decrease too rapidly
Assumption

cross         at once, from above

: charge → discharge

Single generator and single load (SGSL)

Optimal solutions

generator load

Restriction

t

t
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Efficiency - Minimizing Power Loss [2]

• exploitation of capacitor banks
• network reconfiguration
• installation of distributed generation units

Means for minimizing power loss

• bus n : only generator bus,
, power

load buses 
,

Minimizing active power lossProblem setting
• n buses

• power                  is required at 

: active power
: active power

min

: the minimum of active
power loss

The minimum power loss           is similar

how the power loss is related 
the network topology?
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Dual Problem [2]

Lagrangian

: diagonal matrix whose entries are zero,
except for its (n,n) and (2n,2n) entries are 1

Definitions (                                      )

standard basis vector

Lagrange multiplier 

, ,
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Dual Problem [2]

otherwise

objective function (dual problem) :

Dual problem

max s.t.

(                                           )
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LMI Optimization Problem and Duality Gap [2]

max

depends only on the topology of the network

LMI Optimization Problem

weak duality theorem

,

: the optimal value of

depends only on the load profile

zero duality gap!
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Market Models for Demand Response [3] 

non-cooperative game
Market model (for matching supply or shaping demand)

• customer, utility company : selfish

• with unique equilibrium which satisfies social welfare
Each player maximizes its payoff

maximizes social welfare

• the utility and customers jointly determine price and supply
distributed demand response scheme

• based on gradient algorithm

customer utility

• iterative

each objectives : maximize own revenue 

demand

price

equilibrium
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Demand Response Based on Utility Maximization [4]

Utility’s objective : maximize the social welfare

Customer’s objective : maximize own benefit

Households which operate different appliances and battery

Energy storage

running cost 

Each customer i operates a set      of appliance

,

Total demand : 

battery cost

: price : utility 

: power demanded 
by customer i 
for appliance a
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Demand Response Based on Utility Maximization [4]

No demand response

peak cut!

D
em

an
d 

(W
h)

Time (h)Real-time price + battery

real time pricing
battery

reduce the peak load and 
variation in demand

Detailed appliance model (Utility and constraints)
1. air conditioner, refrigerator
2. plug-in hybrid electric vehicle, cloth washer
3. lightning
4. entertainment

Distributed algorithm

optimal prices and demand schedule
• The utility and customers jointly compute

customer

utility

demand

price

• based on gradient algorithm • iterative
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Summary

Demand Response

It is difficult for utility to know each customers’ utility?

• Real-time pricing + battery

• Different appliance model

Renewable Energy

Efficiency
• Relationship between power loss and network topology

• Optimal power flow with energy storage

Modeling  of utility and cost function is an active research issue

Unrealistic…

• Market models
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Introduction : Game-Theoretic Control

Resource allocation

• robustness to failures and environmental disturbances
• minimal communication requirements
• improved scalability

Advantages

Game-theoretic approach

e.g. sensor coverage, wireless access point assignment

non-cooperative game : players are self-interested

• needs to be solved in a distributed, decentralized manner

• the distribution of resources among 
competing groups of agents

• arises in nearly all computer systems

the solution to the problem emerges as the equilibrium of the game

?
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Resource Allocation Game

• Player set 

• Action set for agents            :

• Resource set 

• Action profile :

Pure Nash equilibrium 

Potential game 

Potential game has at least one equilibrium

such that               ,                        and           ,

,

• Utility function 
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Distributed Welfare Games (DWG)

,

• Welfare function :
Linearly separable

Submodular
local welfare function for resource r

set of agents allocated to resource r in a

some friction of the welfare garnered at each 
resource the agent is using

: distribution rule 
at resource r

Distributed Welfare Game
Each player’s utility :

(1) (2)
(3)
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Future Works

Future Works

Camera networks

Power networks

• Distributed Welfare Game

Game-Theoretic Control

Optimal power flow with battery

Applying game-theoretic control to 

• Resource Allocation game

Optimal placement of multiple visual ssensors

Resource allocation problem 
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Appendix
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Dual Problem

s.t.

Primal Problem

Lagrange dual

Dual Problem

: Lagrange multiplier

Utility Constraints
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Submodular

Supermodular (convex game)

Submodular

Coalition

Marginal contribution 
, ,

, ,

The larger coalitions he joins, the higher marginal contribution he gets

The larger coalitions he joins, the lower marginal contribution he gets
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Player set               ,

Distributed Welfare Games

Potential Games

Learning Design

Shapley Value

Gradient play
Log-linear learning

Utility Design

Wonderful Life • Wonderful Life Utility (WLU)

• The Shapley Value (SV)

• The Weighted Shapley Value (WSV)

Cost sharing methodologies

Weighted Shapley Value

‘hourglass’ architecture
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Shapley Value

order A B C
A B C 6 14 4
A C B 6 9 9
B A C 16 4 4
B C A 14 4 6
C A B 13 9 2
C B A 14 8 2

Coalition {A, B}, {A, C}, {B, C}
{A, B, C}

{A}, {B}, {C}

Characteristic function

Marginal contributions (A←B←C)

Shapley value

, ,
, ,

Marginal contributions

A :
B :
C :


