Introduction : Power Networks

Power Network _ ‘
. A network which connects generations e L
Survey on Various Approaches to loads #lﬁ@@ '

to Power Networks > Integrating renewable energy !
— sustainability, available worldwide -

» Efficiency
m — minimize energy loss (Optimal power flow)

» Demand response
— manage customers consumption of electricity
FL10-26-3 in response to supply condition

8th, February, 2011 — help reduce peak-energy demand and
adopt demand to fluctuating generations
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Preliminaries [5] Integration of Renewable Energy [1]
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Optimal Power Flow with Energy Storage [1] Efficiency - Minimizing Power Loss [2]
Restriction Means for minimizing power loss .
ZZlc{g.-(t}.r) RO | b Mg « exploitation of capacitor banks =
A0, 1) = —rdnEX P
=1 ®generation cost  battery cost 27 « network reconfiguration ]
st. (1), (2), (3), (4), (5), (6), (7) iy i) = it} « installation of distributed generation units
: : . - => how the power lossis related e et
=) Optimal solutions g(#), &*() _ the network topology?
> Single generator and single load (SGSL) cost Protljlem setting Minimizing active power loss
at ot} 't A * n buses
generator  |oad S,Q * busn : only generator bus, min Re(Val;) - Z:P *
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3 0] O uses phigeaay P —
N £ crossdf) at once, from above m)‘\ P, : active power = Pios © the minimum of active
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Dual Problem [2]
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Lagrangian a1
LA V)= (d+ D)(Re{Val;] + )
¢
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Definitions (k = 1,2,...,n — 1 ) =1
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M e R2nx2n ; diggonal matrix whose entries are zero,
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Dual Problem [2]
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n—l

(22 = Z MYy — EA;,Y;, +Y 4 M)
objective function (dual problem) : L(", A, i, V)
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LM Optimization Problem and Duality Gap [2]

LMI Optimization Problem - -
A=A € B Xi= Ao Xpg] € R
pel n—1 n—1

max F{A A, p} == ZMP}+ZX&QE—FI€

sLOAX )= MNYe— Y MVet Y +uM>0
k=1 k=1

= Ppin : theoptimal value of f{A, A, 1)
weak duality theorem =) Pogs 2 Pain
F{A, X, 1) depends only on the load profile

(A, X, u1) depends only on the topology of the network

[rank{){)\, 3, p) > 2n — 25> Progy = Pa zero dudlity gap!

Market Models for Demand Response [3]

Market model (for matching supply or shaping demand)
» non-cooperative game
« customer, utility company : selfish
each objectives : maximize own revenue
« with unique equilibrium which satisfies social welfare
.". Each player maximizes its payoff
= maximizes social welfare
» distributed demand response scheme
« the utility and customersjointly determine price and supply
« based on gradient algorithm < iterative

Wt (U (), 0) = )]

@ = equlibrium
price p*(t) = C'(Q"(t).1)
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Demand Response Based on Utility Maximization [4]
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Households which operate different appliances and battery
=) Each customer i operates a set A; of appliance

» Energy storage
B(2) =Y mlr) +1(0), 0< K(H) < B;

» Customer’s objective : maximize own benefit q'_": power demanded

max E U: u(t5,2) — Dilr) — 3 p0)Q:l8) by customer |
baftery cost # for appliance a
% = (gi,a, V& € Ai]
Total demand : Qi(t) = 3 @i.aft} +r:ft) q = (gs. Vi)
> Utility’s objective : maximize the social welfare PP Usia® utility

n (3 tintnn - Di) - o (L a)
i EA ] i
running cost m

Demand Response Based on Utility Maximization [4]
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»> Distributed algorithm di=c (Tatw) .w
« The utility and customersjointly compute price
optimal prices and demand schedule
) . . . demand
* based on gradient algorithm  « iterative

> Detailed appliance model (Utility and constrai nts) _
1. air conditioner, refrigerator H=i s ¥ [Tt - o)

2. plug-in hybrid electric vehicle, cloth washer

3. lightni hg No demand response
4. entertainment e r—r—r—
red time pricing % peak cut!
battery g |
B

=) reduce the peak load and

variation in demand i

Real-time price + battery Time (h)
Tokyo Institute of Technology _M




Summary
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Renewable Energy
» Optimal power flow with energy storage
= Unredlistic...
Efficiency
« Relationship between power loss and network topology

Demand Response
* Market models
* Real-time pricing + battery
« Different appliance model

I:> It isdifficult for utility to know each customers' utility?
Modeling of utility and cost function is an active research issue
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Introduction : Game-Theoretic Control
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Resource allocation

« the distribution of resources among I ’
competing groups of agents EN\2/ 5 ‘,

e arisesin nearly al computer systems t’
€.g. sensor coverage, wirel ess access point assignment

* needs to be solved in adistributed, decentralized manner
=> Game-theoretic approach
4 non-cooperative game : players are self-interested
@ the solution to the problem emerges as the equilibrium of the game

» Advantages
« robustness to failures and environmental disturbances
* minimal communication requirements
 improved scalability
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Resource Allocation Game
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*Playerset N :={1,...,n} °Resourceset R := {r1,...,¥m}
« Action set for agentsi € N : A; € 2®
o Utility function I; : A = B A=A1 % ... x A,
«Actionprofile:@ = (@1,...,a,) € A

a;=1{a1,...,8; 1,8i11,-..,8,} = a = (ai,a—;)

Pure Nash equilibrium a* € .4
[ Ufal,a”;) = max Ui(a;,a”;) Yie N ]
Qi i

Potential game
“¢: A— Rsuchthat ¥i € N,Va_; € A_;andvel,ef € A;,

U‘i(az! a—i) - Ui (Gs’, G_{) = ¢(a‘:'! a—‘l') - ¢(a1{’! a—i)

Potential game has at least one equilibrium E
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Distributed Welfare Games (DWG)
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* Welfarefunction: W: 4 —- R
@ Linearly separable set of agents allocated to resourcer ina

Wia)=3 W:{a},) fal:={icN:rea)
rER

local welfare function for resourcer
¢ Submodular ¥X, Y C N

Wi(X) + Wy (Y) > W (X UY) + WX NY)

Distributed Welfare Game
Each player’ s utility : some triction of the welfare garnered at each
resource the agent is using

= Ui(ai,as) = 3 feli. {a};)  Jfo: distribuionrule
rEa;

at resourcer

(D) feli, {a}s) 20 (2 i ¢ {a}r = fr(i, {a}-) =10

Tmyo(lizu(wzlaim{:ogi, {ﬂ}-p) W ({ﬂ}p) _mmm

Future Works

Game-Theoretic Control
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* Resource Allocation game
« Distributed Welfare Game

Future Works
Applying game-theoretic control to /

Camera networks
— Optima placement of multiple visual ssensors

Power networks
— Optimal power flow with battery

|:> Resource allocation problem
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Tokyoinsituteot Temology _M

Dual Problem

Primal Problem

max Z U (ay)
e
st. Z < Ylel

rier
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Lagrange dual Pt : Lagrange multiplier

D(p) =| max Uiz, ) n T — O
Utility Constraints

Dual Problem
|:> { |||i:]1D{;:]

Submodular
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Codlition ¥S. T C N
Supermodular (convex game)

o)+ o(T<o(SUTY +o(5NT)
= o(SU{i}) —v(S) S o(TU{ih —o(T), SCT, i¢S
Marginal contribution
The larger coalitions hejoins, the higher marginal contribution he gets
Submodular
(S +v(T)>e(SUT)+o(SNT)
=SSV —v(S) 2 w(TU{i}) —v(T), SCT,i¢S

The larger coalitions he joins, the lower marginal contribution he gets
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Distributed Welfare Games
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@ I_'_> Cost sharing methodologies

Payerset SC N :€8
« Wonderful Life Utility (WLU)

f,-(‘i,S) = Wr(S) - W?(‘s\ {i})

[ Potential Games ] * The Shapley Value (SV)
: LS = Y ws(Wi(S)—W(F\{i})
Gradient play TCS\ {1}
Log-linear learning _ [T1Is) — 1 — 1y
“esTTTEE
» The Weighted Shapley Value (WSV)

Wonderful Life
Shapley Vaue
eighted Shapley Valu

Learning Design

‘hourglass architecture

Shapley Value
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(A}, {B},{C} Marginal contributions

. order | A B C
Codlition 4 {A, B}, {A C},{B, C} ABCl 6 14 4
{AB,C} ACB| 6 9 9
Characteristic function BAC| 16 4 4
14} =6,v({B)=4, v(C)=2 BCA| 14 4 6
ofA, By=2, v(4,C)=15, o(B,CY=1W cpp| 13 9 2
v{A, B,C)=24 CBA| 14 8 2
Marginal contributions (A<—B<«C)
A #(A)—0=86

B:o(A,B) —v(A)=20—6=14
C:v(A,B,C) — (A, B)=24—20—4
Shapley value
o)=Y Whﬁuﬁ})—v{&)
Shgs
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