

On Gain Selection
On Gain Selection
On Gain Selection
u_{ei} =
$$k_e e_{ei} + k_s E_R(g_{io_i}^{-1}g_{io_j})$$

In order to achieve good tracking performance and high convergence
speed, the feedback gain k_e should be large (in practice it is limited by
the sensing accuracy, i.e. effect of noise).
However, a large k_e makes the averaging performance poor since
 $k = k_e/k_e$ gets small. To achieve a good averaging performance
simultaneously, the mutual feedback gain k_e should be much larger
Good Experimental Study: What happens for quite large k_e ?
(In consensus, a strong feedback is fragile against delays)
In the demonstration, we had to choose quite small k_e , which
results in a long waiting time. The boring problem could be

overcome by the modification of the input

Tokyo Institute of Technology

₩

23

On Gain Selection

Simple Interpretation of VMO

$$\dot{y} = k_e(r - y) \rightarrow y(s) = \frac{k_e}{s + k_e}r(s)$$

Performance Limitations

- Unstable Zeros
- Unstable Pole
- · Model Reliability
- (Feedback) Time Delay
- Actuator Quality
- Sensor Quality (Noise Effect)
- Computation Capability

Sampling Frequency: about 30[Hz] Nyquist Frequency: about 15[Hz] Available Frequency: 1.5 - 3 [Hz] \rightarrow about 9 – 18[rad/s] Tokyo Institute of Technology

Estimation of Sensor Quality is rather difficult, though I do not intend to say it's impossible (Actually, Wasa kun has already estimated it for the overhead camera). BUT, ...

$k_e, k_s \le 10 \sim 20$

It might be better to run computation much faster (I'm not sure what happens without synchronization with sensing 24

