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* Introduction

- Definition of Visua Sensor Networks

* Passivity-based Visual Motion Observer (VMO) [1]
- Cooperative Estimation Algorithm

- Averaging Performance Analysis corrected!

* On Convergence Speed new:

* Tracking Performance Analysis new:

= Conclusion

[1] M. Fujita, H. Kawai and M. W. Spong, “ Passivity-based Dynamic Visual Feedback Control for
Three Dimensional Target Tracking: Stability and L 2-gain Performance Analysis,” |EEE TCST, Vol.
15, No. 1, pp. 40-52, 2007.
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Visunl Sensor Networks
Comnilcation
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@y ~ @y can be viewed as a measure of the convergence speed
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Time Complexity

Definition
Given target orientations (eE""‘ Jiev €8 andinitial estimates

(€% );ep € 8 , When the present estimation algorithm is applied,
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thetime complexity of £ —level averaging accuracy task is
defined by

T(e) :=inf T .t (P )sey € Qple) Vi > T
Inspired by Bullo et al. [4]

R = { s [ Sty < | .
HEV
F
V< e Vi) = VO — et B (1) < T PO .)
But, what is @1 ? No infor mation! Rxi1] -

Problem: T(z) & O{(F(G}), O{f{k.)), O(fka))?
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Theorem 2

Tokyo Institute of Technology

Theorem
/S-upposethat all assumptionsin Lemma 2 hold and the graph is N
undirected. Then, we have vio) -
Ty <P = TR (_ _")
SR O O ialli) B R
Qi= 33D e Eenef)
=V eV
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Given n, e, €, & (—=rin Theorem 1 is decides), then we have
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Proof of Theorem 2

In the following, we consider only ¥ < —ay If (f=c)iey €5
Any lower bound of &1 gives an upper bound of T'{1)

a1:=AY (me—é"",éi--.) the Y ple ey ))
=Y JEMG
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Remove constraints B B; = I, det(R;) =1
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Proof of Theorem 2
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el

Consider only (1,1)- component of the optimization problem

. B 1 12 1 Lz
r}lé-ﬂﬂevi‘ezv(ke”r‘] —a +ksfzﬂ_:'“"|l _'; I )

(Additional) A$umption 3: Thegraph Gis undirected

I e L D
i ea’ e Graph Laplacian [ ” ]
of thegraph G

Optimal Solution:
ko(r'! — g} +k, Lgr!! = 0 — ¥(r' — ') + Lrl! =0
=) 10 = MK+ Lo) ' = Agth, A = (T + La/h) ™ 4
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Proof of Theorem 2
P = Ag" A= (T + LB —> (Rellrt — g1 + R (7T Lort)
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Proof of Theorem 2
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AlLg = LgA? (commutative)
{I+Le/W)y e — Lell + L/l
= +Le/ky el + Lofk) — (1 + Le/B) e WI + Lo /&)™ =1

[if A and B is symmetric and AB = BA, then A{AB) = .\(A)A(B]]

B gy stz > B0 (axg™Y L)
= A e e

The graph Laplacian L hes1 =1 --- 1]:" an eigenvector
corresponding to the zero eigenvalue. Let the orthogonal component
of #'' tothe eigenspaceisgiven by 4™ = Mq"!, M = (f — 117 /)

M ={I —11%/n) : graph Laplacian for the complete graph
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Proof of Theorem 2
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Outline

= Introduction

- Definition of Visua Sensor Networks

+ Passivity-based Visua Motion Observer (VMO) [1]
- Cooperative Estimation Algorithm

Tokyo Institute of Technology

= Averaging Performance Analysis corrected:
* On Convergence Speed New!

= Tracking Performance Analysis new:

= Conclusion

[1] M. Fujita, H. Kawai and M. W. Spong, “ Passivity-based Dynamic Visual Feedback Control for
Three Dimensional Target Tracking: Stability and L 2-gain Performance Analysis,” |EEE TCST, Vol.
15, No. 1, pp. 40-52, 2007
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Natur e of Euclidean M ean
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Mation of Average
; 1
Euclidean Mean: % = Proj(S(t)), 52) = - ng“w,
ng :=arg _min Y ¢(e*59e€9“’“j) EV ¥
e9e50(3) jey ZAverage Pose Arithmetic Mean | #eu,
A - 15
If the target orientations ¢*%“°; move, the mean ¢£%" also moves 5 =;;¢’"‘ ,,’
Rigid Body Motion e
gid Body oWy
g efPeeq
ofBna

Pose of ObJECt: Buuwe = (Paroys €47
Body Veooiy: 72, — gk 7

Assumption 4 (Target Object Motion)

V2, iscontinuousin ¢ > @ and satisfies
050,12 < By, i, I < Br Wi € ¥

For al time¢ > @1, there existi, j € V such that &uwoi = %o or from polar decomposition
o () = S()Ps(t)™*, P3(t) = ST(1)S(2)

M =UyuEVE (Singular Value Decomposition)
=) Proj(M) = Uy Vi € SO(3)[5]
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=801 800 g W EY and £ >0

Body Velocity of Average Relation between Body Velocities
& (1) = S@WPs(t) ", P3(1) = ST(MS() Lemma 6 (praved from [7)
L o o5 . Suppose that {e5*=1);cy sctisfies |[€ — S(e)l» <7 v >0
S5t) = ;g T+ Gwor = Gue: Ve, + ASSUMption 4 Then, the following inequality holds.
! 2
S(#) > 0 and hence invertible, andS(#) is continuous and differentiable la* @2 < p2(7) |wr@)[} /5, ply) = %
=) Ps(?) is continuous and differentiable In addition, [[e®*{#)]|* = ||wp(t)||/n
i) = [k, - AT wnlt) = (ke - (20T

Assumption 4 =) Psft) is continuously differentiable

=) % (1) iswell-defined and continuous
since ¢¥" (1) € SO(3), &% (£) € T - (,, SO(3) holds _ _ _ _
= 7 n be estimated from the prior set-valued information

on the targets' orientations

Tangent Space: Tzon 1, SO3) = {5 (1X| X € sof3)}
as [ -£6" 6% b [7] 1. Soderkvist, “Perturbation of the Orthogonal Procrustes Problem,” BIT
e =er W Numerical Mathematics, Springer, Vol. 33, No. 4, pp. 687-694, 1993 a

The motion of the average is represented
Tokyo Ingtitute of Technology

18" — S(E < B = o e EerePoer) vi € v

Tokyo Institute of Technology.

Theorem 3
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Problem Reformulation
) . . Theorem
ﬁ;?ragmg Qpls) == {(e”“e Yiev | ole % ety < F.‘px} Under Assumptions 1 and 3, Then, if &, > 2u? , then the position
ormance = and orientation estimates achieve e}, and =5 - level tracking
£ A degree of improvement of mean estimation accuracy performances respectively with
i 1 ii
— ; . 05 o _1— p— R
pri=Y $e % o) 2 oy -—g;l;Zé(e'E i efBini) < o0 =l et g oD
i€V =TV _
=1+ L + o
' . for Fa R
Accordingly, gle):= {(e”'-l}ggu Y e sy < e;{x} k. — 2 pplk. — 21}
iev The tracking performance improves as the feedback gain of the
visual motion observer gets strong

Definition
The estimates (¢fim )¢, are said to achieve ~ - level Tracking
performanceif there exists afinite such that

(c@“‘i Yiev € Qle) Vi > T, wp satisfying Assnmption 4
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Proof of Theorem 3

V=3 ete )

¥V  timevarying
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From the proof of Lemma2
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Proof of Theorem 3
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Proof of Theorem 3
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Summary
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Supposc that all sstimptions m Lenma 2 bold. Then, for any « & (0,1] ‘
peosition estimtes (fl, licy achicves £y - level avernging sccurney :

rll ........ "

Swppose that all assumptions in Lenuma 2 hold and the gaph is
undirccted. Then, we bave i

thwerwis In acddtion. f & IR, 3 >0, ten
- Diclination i
it sy i ’ J
i Asmption 4 f \We have derived
jre= Tisanom . ~  *Averaging Performance

Uinder Assumptions | and 3, Then. if & > 27, them the position
Nicve 2 and <) - bevel rackiag * Speed of Convergence
* Tracking Performance
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On Gain Selection

On Gain Selection g = Keei + kaER(gi:}gfw)
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In order to achieve good tracking performance and high convergence
speed, the feedback gain k. should be large (in practiceit islimited by
the sensing accuracy, i.e. effect of noise).

However, alarge k, makes the averaging performance poor since
k= k. /&, getssmall. To achieve agood averaging performance
simultaneously, the mutual feedback gaink, should be much larger

Good Experimental Study: What happensfor quite largek, ?
(In consensus, a strong feedback isfragile against delays)

In the demonstration, we had to choose quite small k., which
resultsin along waiting time. The boring problem could be
overcome by the modification of the input
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On Gain Selection
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Simple Interpretation of VMO A
3= kelr —3) — i) = (o) A
Band Width
Performance L|m|tat|ons \
» Unstable Zeros
« Unstable Pole Estimation of Sensor Quality is

rather difficult, though | do not

+ (Feedback) Time Delay intend to say it’simpossible

« Actuator Quality (Actually, Wasa kun has already
« Sensor Quality (Noise Effect) estimated it for the overhead

« Computation Capability camera). BUT, ...

Sampling Frequency: about 30[Hz] ke ks <10~ 20
Nyquist Frequency: about 15[Hz] it might be better to run computation
Available Frequency: 1.5—3[Hz] much faster (I'm not sure what happens

— about 9—18[rad/s] without synchronization with sensing
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» Model Reliability




Plan of Submission for CDC 2011
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* Introduction

- Definition of Visual Sensor Networks

« Passivity-based Visual Motion Observer (VMO) [1]
- Cooperative Estimation Algorithm

= Averaging Performance Analysis corrected!

* On Convergence Speed New!

* Tracking Performance Analysis new!

= Conclusion
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Additional Issues
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Promised Future Work
« Switching Topology AnalysisviaBrief | nstability
« Communication Delay (Asynchronous Case: given in CDC)
« Extension to Omni-directiona Vision Cameras
| hope these issues are completed by students
New Experimental System under Py

Construction with Helps of Nishi & B .ﬁh—-b
Sunaga(Real Distributed System) ,m L
] $ 4 [

Computer

o3 N

Firafty MV OpanCV, DS1104 l

Computer
o {3 wW—e
- XBaw
/ Firefty My Opency, DE1104
- [ ———— |

Additional Issues

Challenging Future Works
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VMO + Baysian Decision-Making

Preparation: Integration of target
object motion model with VMO u, |

: Vo
Problem: VMO in the I L‘.*l'?i'_"»;-‘l"u'?ﬁ"'

framework of Statistics
Extension to Distributed Version is much more challenging

Game-Theoretic Task Assignment in Visual Sensor Networks
with Helps of Nomura

Auditory Sensor, Stereo Vision, Spherical Camer a, etc....
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