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Cooper ative Estimation
Objective
To present a distributed estimation algorithm by using not only
sensed data but a so some information from the other sensors

Motivation: Visual Sensor Networks
A network consisting of spatially distributed
smart cameras

Applications
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Surveillance Environmental Entertainment
Monitoring
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Estimation Algorithm: [3] = [1] +[2]

Main Theorem (What to Prove): [3]

Approach to Proof: [2]
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Basis on Average and Optimization on Manifolds: [5],[6]
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= Introduction

- Definition of Visua Sensor Networks

+ Passivity-based Visual Motion Observer (VMO) [1]
- Cooperative Estimation Algorithm

= Averaging Performance Analysis corrected:

* On Convergence Speed new:

* Tracking Performance Analysis new:

= Conclusion
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Rigid Body Motion
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Relative Rigid Body Motion
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p Vision Camera
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Visual Sensor Networks
Visual Sensor Networks S
Communication ———— "Q':" Vikn Camrn 4
Communication Graph :G = (V, €) ; b )
(i,7) € £ <& ¢ getssomeinfo. of j - i
Neighbor Set: M; = {§ € V| (i, 7} € €} WaBn? hioatnem

— Number of Cameras and Targets
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—— Relative Rigid Body Motion
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Visual Motion Observer[1]
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T
'--i not measurable measurable  Estimation
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This mechanismis called Visual Motion Observer

[1] M. Fujita, H. Kawai and M. W. Spong, “ Passivity-based Dynamic Visual Feedback Control for Three Dimensional
Target Tracking: Stability and L 2-gain Performance Analysis,” IEEE TCST, Vol. 15, No. 1, pp. 40-52, 2007.
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Objective
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. o a W Average Pose

Objective: Present an algorithm for visual sensor networks, so that the
estimates g;,,, achieve the following requirements simultaneously

* (Averaging) : estimate gives an approximate aver age of {gua, }ew
* (Tracking) : estimate tracksto the object motion g;,

Position Ave. : p* == Z Puwo; —nrsmInZIIP Posy [
. ) ]€V
Orientation Ave.: & .— arg sam'" Z ¢(67§9 fouoj IR} = 5 Lim_ngi
(Euclidean Mean [5]) £e50(3) jev
most closest element to all the objects’ 9l = n—(},—eé')

orientationsin terms of metric ¢ ﬂ
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Objective

pR=E¢{e_£"3¢é""¢) Sum of distances from thefinal
§€¥  mean object’sorientation estimates and the mean
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Fact: In the absence of communication, the VMO correctly estimates
the target’ s orientation ¢£%o; , namely the right hand side s estimation
accuracy of the mean as agroup in the absence of communication

Qnle) == {(ef"“- Yiew |3 6(e= 8% o) < E,,R}

icy mean estimates
& : A degree of improvement of mean estimation accuracy
Definition
The estimates (¢f:),.,, are said to achieve - - level averaging
accuracy if there exists afinite F* such that

(Eﬁ“* Yiecv EQr(e) vt 2 T

Inspired by Bullo et al. [4] ﬁ

Cooperative Estimation Algorithm
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+ Synchronization[2]

._io = Gio;leis P i+ K, E, [ e
oy = Bio et et = betes + 84 3 Eielfia i) (Passivity)  (Passivity)

JEN;
Synchronization[2)] +Sync.
Error Feedback from
[4] Y. lgarashi, T. Hatanaka, M. Fujita + Neighbors

b
and M. W. Spong, “ Passivity-based V‘”"”i
Attitude Synchronization in SE(3),” |IEEE
Trans. on Control System Technology,

Vol. 17, No. 5, pp. 1119-1134, 2009.
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Assumptions
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Assumption 1 (Communication Graph) A
The communication graph |G = (V, £) isfixed, balanced and
strongly connected.

\ J

fAssumption 2 (Target Object Pose) N

There existf, j € V such that %o = SOuo;

Forany i € V, e&%c%; > o holdstrue, that is, the relative angle
between each target’ s orientation and mean is smaller than
\SSet Membership Prior Information) Y.

Inthissection... Target object is static: V.2, = 0 Vi € V
Proposition: [2] +[5]
Suppose that c‘é w-icf"m’: >0Vi, 7V . Then, wehave
ﬂc'sreg"“') <Oy maxb(e"s" e@‘"!) WiecV

Procedur e of Proof

[ Assumptions 1 and 2 J

Tokyo Institute of Technology

Lemma 1l Lemma2

L 3
e Theorem 1

ma4
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Lemma 1 (Positively Invariance)
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Under Assumptions 1 and 2, if ,—&6; Eeml = 0 holds at theinitial time,
‘mean esimate
then for any positive scalarc there exists afinitetime r{e) st.

#(e= 8 Biory < G &b 59w0h)+c vt>T(e), i€V
‘mean éslimate “mean orientation farthest from the mean

h := arg max ¢(e—f"*e§9’”"j) 0= ¢(e_£9*e59“’“h), de=0d04c¢c
J

Proof: Use ¥* = max ¢{e—% eﬁ'--) asapotential function |-
Inspired by lgarashi et'al [2] (Proposition 1) s
Under Assumption 2, theregion
§= {(ﬁ-w)mﬂ ¢ e, > 0 vi v}
ispositively invariant, i.e. if
&5 ofBiuy ~ g holds at theiinitial time
then it also holds for all subsequent time

Tokyo Institute of Technology.




Lemma 2 (Mild Statement on Averaging Performance)
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Under Assumptions 1 and 2, if (e };c € & holds at the initial time,
then the estimates achieve 1-level averaging accuracy

Z $(e 8 5%) <Y p(e= oy wi > 7

mean egtimate i€V mean object sorientation

Theleft hand sideis estimation aPes;

accuracy of the mean asagroup in 8

the presence of communication }

Lemma 1 meansthat the x(1)

estimation accuracy of the mean &,
improves by using communication % :

and cooperation BUT does not say
how accurate estimates of the
mean isprovided.

S =8ngrl) @

Proof of Lemma 2
Tokyo Ingtitute of Technology

. — Summation of Individual Energy
Potential Function: 7 = Zﬂe_é"'ea"i) Function: Inspired by Igarashi et al.

eV [2] or Chopra & Spong (2006)

Behavior of Estimates
s — Bt (i sk Bt Bt (o ooy

V =23 k(e 6% e ) ) s =0 (ke ) e

- Zir (ﬂ:(e—f"'ﬁw) {k,*(.—a-we@--uH b *{e_a"lea"!)})

=== Etr{k. (c_areé‘"- - c‘“’egi'"-e_eo' e€§ ]
Py =

+k, Z (_Erea":—e_‘ereei"le e’“ zﬁ""*)}

JGM

Tokyoinsituteot Temology _MM

Proof of Lemma 2
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Lemma4
?ﬁ(ﬂfﬂ:—ﬂw&)Zﬂﬂm—mﬁm ]
+ Anin{oym{ R Ra))6{ RS Rz) VR, R, Ra € SO(3)
Igarashi et al [2]

P = _‘E'.BE"’"‘ —e_‘e’.eg“le_‘é‘“le&“')
R n

—%n{m) < (e~ omnr) — oot eFmer) (e Eume B
03 = Ammim (sym{e %" f0=ut))

Pg = Z (e—&refl.., - e_&.eea"'le_&'ﬂe we)

jea: 1 Ba R Ay R R
it € 3 she 8 Bees) - gl Bems) _ bt By
JEM a

Proof of Lemma 2
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— () < $lo~ 6Py — oo~ 6Fenc) — aple—Femigiton)
—3i®s) < 37 e B o) - i o) — oy Bl
FEAL

3 3 (Retn(®1) + otr(2)
eV

<kY. S8 oFBesr) — Yo oot} _ e Foos Pt

€L
eI 3 e ) — et ef’-"--)} e Ems o
icV JEA

=0 under Assumption 1 (similarly to Igarashi et al [2])
= ke ) e o) — e o) — o Bees o)
EEV —k. z z wﬂe_éi"‘ cy"!)

eV e,
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Proof of Lemma 2
V<k Y, ste )= o ® i) orple Bt
icy _Z z mnﬁ(e—&“'d&""]
TEV JEN;
Supposethat[z e Py} _ 8 P,y < u]
icW

VSk Y —aple o) b, 37 3 onple s fBems)
iV TEVIEN;
under Assumption 2, thisterm is strictly negative

From theorem on Ultimate Boundedness in the book by Khalil, the
trajectories of estimates ultimately converge to the set satisfying

E ﬂ,—f"h)—ﬂa—é".ﬁm) >0
i€y
[ Z é{e_e"e”“')< Z Mg—frc&...,}]
ey a

How to Think?
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Notice : We do not use the fact that ¢4#" is an average !

[ 3 S ety < ™ el Vef']

0 e s o
i€V

_Z E hﬂe‘mteﬁﬂs )

IEV jeN;
[Z dJ(e_?’“i eéa.,,i ) ] Z ¢(e‘£"“‘: eé'wf.- )
i€V If eg_,‘ - Eﬁ_, , €V for acommon j
Y ole By < e Bmos )

eV
We next eval uate closeness between estimates i and ,él-.-,
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Division of A Set &
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Py ooy
8 & ] &
Ogie}
. \A e
S Salk,=)

o icn not close

Salk) = {(efi-w)‘ 3y ¥ e o) > *ﬂn} Estimates are
Sx(k,2) = &1\ (S2{k)U Qgrls)) Estimates are close enough

A=1- 28, k=Fk./k,

Tokyo Institute of Technology

Lemma3
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Suppose that all assumptionsin Lemma 2 hold. Then, if g > 0, then
there exists a positive scalar agsuch thet ¥ < —ay, ag > 0 holdsat

least after the timey{¢) aslong as (efi“")isw € &k

In the previous version, we proved o

the main theorem under the s
misunderstanding that &y \ Sz(k) 51
is positively invariant but it was V<

wrong! The trajectories can get

out of the region! Nevertheless, we VQ ! oo,

can prove the main theorem without V<a

such a statement aslong as V Salk)

decreases in the region .
Sx(k,€) = 51\ (Salk) U R(e)) pyte et

strictly decreases
Tokyolnsituteof Technolay w

Proof of Lemma 3

Lemmal d(eclioy < g, vi>w{e), ieV

Lemma’5: @ = Amen(spmmi{e 4" b)) > g :=1— /25,

proved by perturbation theorem

Tokyo Institute of Technology

vt > 1{e) , weget
sy {g. (e o) — O B — g o B} k..sﬁz;‘ a(e-a-é"-:)]
P ik il

Suppose that 2{“’*4’""“"’5 ue-f'-#-u} €0 .. {fm)yey £ 5i(R)
L3

Then, V< kY {—¢(¢~€'J‘-«) - Meﬁ-‘e@’-)]
eV

az = strictly negative under Assumption 2

Lemma 4
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1/ @ hz=Llz=1tm=12
Li= |mind T = =
() @}2‘@ & o L

lij : Size of the shortest path from notei to j along the graph &
whose edges are replaced by undirected ones

eg"!
Suppose that (€% };ey € Salk, &) s 5
and 2> 0. Thenthereexistsa § ¢ ¥
such that the following inequality
holds at least after time (e} P
P 2 &
Eﬂe“”‘ﬂ-eﬂ'ﬂ) < Lkpw ; eV Salk,2)
IEW 2 ?
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Theorem 1(Averaging Performance Analysis)
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(Suppose that all assumptionsin Lemma2 hold. Then, for any e & {0, 1}
position estimates (g, Jicw achieve &; - level averaging accuracy

with
f1-(1-¢ VELY? k<)L
EP_{ 1 @- t1 -

In addition, the orientation estimates (géﬁn« Jigy chieve g - level
averaging accuracy with

o J1-(1-9 VELY ifk<pg/L? 820
en-{1-0-90 o/

k=k./ky — O(ky >> k) = 25, g get small

E—-0=2cm0, cpel1-—3
same conclusion as multi-agent optimization[3]

Noticing that 8 < 1, we see that an offset appears only on orientationa
Tokyo Ingtitute of Technology
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Difference between SO(3) and Vector Space
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In generdl, al the local issues on amanifold
can be approximated by those on a vector space

f=1-v28, -0=>3—-1
5= pe " efuon) 5. =d+¢
Targets' orientations are close to each other

Note that the discussion does NOT imply that the theory isvalid
on ajust very limited region on the manifold.
The estimates can be far from each other.

(©)

Tangent Space

Convergence to a neighbor of the
mean is semi-global. Only how
close to the mean the estimates
get after entering the neighbor
isan issue on alocal region
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Proof of Theorem 1
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. ey
Itissufficient to provethat ¥V <« 0 V<q
intheregion Ss{&.s) at least after
thetimer{e) vV <t

fnf=}
Py {b, (0 e — i & Beme) — e tom)) \A} ey
& /T
_H”EM“,—E.&-,)} Salk, =)

LES E{ke (s o) — e ms) (1 — )3
i€V

—koeBipleFore o) _ g P ﬂe*"—«e"'f)]
A

strictly negative under Assumption 2

‘)52{": (ﬂfa—e&"‘]—é{e'ere&w]— (1—:)&(;-5‘—-#—-]}] —ag
v
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Proof of Theorem 1
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vy {b, (.p(e-f"gf'-«) = §(e T o) — (1 e)3ple e clBem) )} — &y
=P

ﬂe‘éﬁtq eé&.,.‘] > ﬂqﬁ{e_&“j' e“‘-q) — ﬁﬂ,(e_&w_f, eé‘i.,‘)
Ya € (0,1}

-]
I=—ol® 2 all=— 2% - T—=l=— =

{1 -m)l=+ lTl.Il"l + l-_l.|:|'—k",+hz':— H:-

=(17-J(=fl—1.s+ﬁ )lzn
?sz{h (o8 ) - e o) — 1 — gt P by
=
+a(; : :)ﬂ ﬂﬂ--.g-ny gei"l] )} — as
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H Proof of Theorem 1
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#SE{#. (ﬂs‘a'ea'w)—ﬂs‘é"ea-w)_ [1—¢ g_ﬂ"rct'—n)
HEV
Y mﬂ--,-,m,)} o

Va e {0,1)
Lemma4 ]

5" st By < LIy 1 e € )
eV

at least after the time T{«)
v L SRS S —5!-1&..‘

) )} ~ag

g4>0

[ Zé(ﬁ‘é’-«}squﬂe"-)\fe"] &% isan average!
ier =)
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Proof of Theorem 1
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eV

V< k.{ Y (e o) g ) (1 Ya e )

e )| 8

s Sfrtdi s (i a o ‘;'f’:)))] e

since (€% yiev € Salk, ) with er = 1 — (1 — e}(/B - VEL)?
we have ¥~ ée# i) < (1- (1 - elV/B - VEDT) 3 e o)
fep fEew

Ths, ¥ < kepn(1 - ) (a9 - 5222 — (VB - VELY?) -

1—a

itispossible to prove that thisterm is not positive
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Proof of Theorem 1

The function ¥ is strictly decreasing
except for the case (J"'-«).—Ep € pl=r) s
There is no escape other than gz q)
In addition, the time derivative of ¥ ¢
isstrictly negative, the trajectories enter ¥ <
Qp(eg) inafinitetime and remainin
the set for all subsequent time

— &g - level averaging accuracy
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3
¥

EPon,

V = 3 ofe &%)
W
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Summary
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o
(V.£) G
(i.j) € E & i pets some info, of J vy B 4
f |- 5
cighbor Sct- N = {j € V] (i, jl € €} .;ﬂ Ll
Number of Cameras and Targets P =] \
Vi= {1, ,n) " Averege Pose

Helative Fighl Body Mothon —

i ; | Defini
Ry == el + Poow Vs FE Y The estimates (¢ )icw are said 1o achieve © - level avernging
Visaal i aceuracy if there exists o finite T such that
Ji=1f i = (et Yiep e Qple) Wt = T
A
the = keCei + ks 2 E‘n(_f_ar:‘_‘_‘},,“ ] Suppose that all psumptions i Lemma 2 hold. Then, for any « & (0, )
JEN, position estimates (i, Loy achicves p - bevel averaging acourscy
Synchronization|2] ik [ g O T
2 L1 T m——
In addition. the erientation estimates (5" J;cy achieves 2 fi- level
averaging accuracy with
3 e O VL) ifk L* =0
. ‘soperntive : L1 utherwise y
= p—ry |
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