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Cooperative Estimation

Cooperative Estimation

Motivation: Visual Sensor Networks
A network consisting of spatially distributed 
smart cameras

Smart Camera 

To present a distributed estimation algorithm by using not only 
sensed data but also some information from the other sensors

Objective

http://www.itmedia.co.jp/news/articles/1005/27/news088.html

Applications

Surveillance Environmental
Monitoring

Entertainment
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・ Passivity-based Visual Motion Observer (VMO) [1]
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・ Cooperative Estimation Algorithm
・ Averaging Performance Analysis Corrected!

・ Conclusion

・ Tracking Performance Analysis New!

・ On Convergence Speed New!
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Rigid Body Motion
Pose of Vision Camera i relative to

:  Rotation Axis :  Rotation Angle

“∧” (wedge) : 

“∨” (vee) :
(Inverse Operator to Wedge)  

Rigid Body Motion
Rigid Body

Motion

: Linear velocity : Angular velocity

Body Velocity 
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Pose of Object:
Body Velocity:

Rigid Body Motion
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Relative Rigid Body Motion
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Pose of Target Object relative to
Vision Camera Frame

Camera
Vision

Visual measurement should be
a function of relative pose

RRBM

Relative Rigid Body 
Motion

Body Velocity of Vision Camera
Body Velocity of Object
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Unknown
Vision Camera

measurable

Projection
Perspective

Points
Feature

Visual Measurement

Relative Rigid
Body Motion

Visual Measurement

not measurable
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World FrameObject Frame World Frame

Vision CameraImage Plane

: Focal Length

Frame

Feature Points of Object

Perspective Projection:

Position of feature points relative to object frame

Position of feature points relative to camera frame

known
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Visual Sensor Networks
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Visual Measurement

Relative Rigid Body Motion

Number of Cameras and Targets

Visual Sensor Networks

Communication Graph：
gets some info. of

Communication

Neighbor Set:
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Observer

System

estimated

Model
Camera

RRBM Camera

not measurable measurable

estimated

RRBM

Error
Estimation

Vision

Vision

Model

estimated

Model
Camera

RRBM Camera

not measurable measurable

estimated

RRBM

Vision

Vision

Model
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Estimation Error System Negative Feedback

Visual Motion Observer

This mechanism is called Visual Motion Observer

Visual Motion Observer[1]
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most closest element to all the objects’
orientations in terms of metric  

Objective
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Position Ave.：
Orientation Ave.
(Euclidean Mean [5])

:

• (Averaging)：estimate gives an approximate average of 
• (Tracking)：estimate tracks to the object motion

Objective: Present an algorithm for visual sensor networks, so that the 
estimates        achieve the following requirements simultaneously

Average Pose
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object’s orientationmean

Fact: In the absence of communication, the VMO correctly estimates
the target’s orientation          , namely the right hand side is estimation
accuracy of the mean as a group in the absence of communication

Sum of distances from the final
estimates and the mean

mean estimates

: A degree of improvement of mean estimation accuracy

The estimates                 are said to achieve      - level averaging 
accuracy if there exists a finite     such that

Inspired by Bullo et al. [4]

Definition
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Cooperative Estimation Algorithm
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Relative Rigid
Body Motion

Relative Rigid
Body Motion

Model

Vision
Camera
Model

Camera
Vision

Visual Motion Observer

…

Receive from
Neighbirs

…

Error
Com.

Pose Synchronization [2]

[4] Y. Igarashi, T. Hatanaka, M. Fujita 
and M. W. Spong, “Passivity-based 
Attitude Synchronization in SE(3),” IEEE 
Trans. on Control System Technology, 
Vol. 17, No. 5, pp. 1119–1134, 2009.

VMO[1]＋Synchronization[2]
（Passivity）（Passivity）

Gradient Decent[6]＋Sync.
Error Feedback from
Object + Neighbors

VMO[1]
Synchronization[2]

Cooperative Estimation Algorithm
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The communication graph                       is fixed, balanced and 
strongly connected.

Assumptions
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Assumption 1 (Communication Graph)

Assumption 2 (Target Object Pose)
There exist              such that                        
For any           ,                           holds true, that is, the relative angle
between each target’s orientation and mean is smaller than
(Set Membership Prior Information)

In this section… Target object is static:  
Proposition: [2] + [5]

Suppose that                                                    . Then, we have
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Procedure of Proof
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Lemma 1

Lemma 3

Lemma 4

Assumptions 1 and 2

Lemma 2

Theorem 1
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Lemma 1 (Positively Invariance)
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orientation farthest  from the meanestimatemean mean

Under Assumptions 1 and 2, if                          holds at the initial time,

then for any positive scalar     there exists a finite time     s.t.
estimatemean

is positively invariant, i.e. if                        
holds at the initial time 

then it also holds for all subsequent time

Under Assumption 2, the region 

Proof: Use                                         as a potential function
Inspired by Igarashi et al [2] (Proposition 1)
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Lemma 2 (Mild Statement on Averaging Performance)
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object’s orientationestimatemean mean

Under Assumptions 1 and 2, if                         holds at the initial time,
then the estimates achieve 1-level averaging accuracy

The left hand side is estimation 
accuracy of the mean as a group in 
the presence of communication
Lemma 1 means that the 
estimation accuracy of the mean 
improves by using communication 
and cooperation BUT does not say 
how accurate estimates of the 
mean is provided.
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Proof of Lemma 2
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Potential Function: 
Summation of Individual Energy 
Function: Inspired by Igarashi et al. 
[2] or Chopra & Spong (2006)

Behavior of Estimates

2 2
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Proof of Lemma 2
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Lemma 4

Igarashi et al [2]
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Proof of Lemma 2
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under Assumption 1 (similarly to Igarashi et al [2])
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Proof of Lemma 2
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under Assumption 2, this term is strictly negative

Suppose that

From theorem on Ultimate Boundedness in the book by Khalil, the
trajectories of estimates ultimately converge to the set satisfying
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How to Think?
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Notice : We do not use the fact that         is an average !

If

We next evaluate closeness between estimates           and

for a common j



Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Division of A Set
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Estimates are 
not close

Estimates are close enough
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Lemma 3
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Suppose that all assumptions in Lemma 2 hold. Then, if          , then
there exists a positive scalar     such that                    holds at 
least after the time        as long as

strictly decreases

In the previous version, we proved
the main theorem under the 
misunderstanding that
is positively invariant but it was 
wrong! The trajectories can get 
out of the region! Nevertheless, we
can prove the main theorem without 
such a statement as long as      
decreases in the region 
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Proof of Lemma 3
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Lemma 1:

Lemma 5:
proved by perturbation theorem

, we get

Suppose that

Then,

strictly negative under Assumption 2

…

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Lemma 4
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Suppose that                                       
and            . Then there exists a

: Size of the shortest path from note i to j along the graph
whose edges are replaced by undirected ones

such that the following inequality 
holds at least after time

1

2 3

1

2 3 (when j = 1)
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Theorem 1(Averaging Performance Analysis)
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Suppose that all assumptions in Lemma 2 hold. Then, for any
position estimates                achieve        - level averaging accuracy
with

In addition, the orientation estimates                    achieve        - level 
averaging accuracy with

get small

Noticing that            , we see that an offset appears only on orientations 
same conclusion as multi-agent optimization[3]
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Difference between SO(3) and Vector Space
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In general, all the local issues on a manifold 
can be approximated by those on a vector space

SO(3)
Tangent Space

Targets’ orientations are close to each other

SO(3) mean

targets’
orientations

Convergence to a neighbor of the
mean is semi-global. Only how 
close to the mean the estimates 
get after entering the neighbor 
is an issue on a local region

Note that the discussion does NOT imply that the theory is valid 
on a just very limited region on the manifold. 
The estimates can be far from each other.
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Proof of Theorem 1
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strictly negative under Assumption 2

It is sufficient to prove that             
in the region              at least after
the time
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Proof of Theorem 1
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Proof of Theorem 1
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Lemma 4

is an average !

If                                      and

at least after the time
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Proof of Theorem 1
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Since                                          with

we have

Thus,

it is possible to prove that this term is not positive
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Proof of Theorem 1
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The function     is strictly decreasing
except for the case

There is no escape other than

In addition, the time derivative of   
is strictly negative, the trajectories enter

in a finite time and remain in
the set for all subsequent time
→ - level averaging accuracy 
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Average Pose

Summary


