\mathbf{T} ☆ Introduction Robotic Network A network consisting of multiple robots, for example: Study on Pose Synchronization of mobile sensors · unmanned vehicles **Multiple Robots** Advantages of a network are better performance or robustness against failure. Application Environment monitoring Search Exploration and Mapping Rescue Gunter Heppeler Operation of Robotic Network FL10-19-2 Each robot has to a act *cooperatively* while using only *limited information*. Cooperative Control 25th.November.2010 Cooperative Control Problems can be formulated as Pose Coordination Problems. te of Tec Fokyo Institute of Tech Tokyo Instit ♠ Outline Outline ate of Teci • Setting • Setting • Attitude Synchronization [2] • Attitude Synchronization • Attitude Synchronization with Leader [2] • Attitude Synchronization with Leader • Pose Synchronization [1] • Pose Synchronization • Conclusion and Future Works • Conclusion and Future Works \mathbf{T} ☆ Setting Setting This presentation is a brief introduction of the main results of the following papers: Paper: T. Hatanaka, Y. Igarashi, M. Fujita and M.W. Spong, "Passivity-Based Pose Synchronization and Flocking in Three Dimensions", IEEE Trans. on Automatic Control, 2010 (conditionally accepted). World Frame Σ Frame Σ Y. Igarashi, T. Hatanaka, M. Fujita and M.W. Spong, • We consider n robots in an inertial coordinate frame Σ_w . "Passivity-Based Attitude Synchronization in SE(3)", IEEE Trans. on Control Systems Technology, Vol. Each robot has a body fixed frame Σ_i . • The coordinate frames are all Cartesian and right-handed. 17,No. 5, pp. 1119-1134, 2009. The results are transferred from 3D to 2D. 6 Tokyo Institute of Technology Tokyo Institute of Technology

141	Outline Tokyo Institute of Technology	Summary and Future Works Tokyo Institute of Technology
SetAtt	ting itude Synchronization	 Summary Passivity based 2D control laws were presented for Attitude Synchronization Attitude Synchronization with Leader (constant linear and angular velocity) Pose Synchronization Pose Synchronization with Leader (constant linear and angular velocity)
AuPos	se Synchronization	 Future Works Pose Synchronization with leader (variable velocities) based on Contraction Theory [3]
• Co	nclusion and Future Works	Paper: SJ. Chung and JJ. E. Slotine, "Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems", <i>IEEE Trans.</i> on <i>Robotics</i> , Vol. 25, No. 3, pp. 686-700, 2009.
Tokyo Institute	of Technology 25 Fujila Laboratory	Tokyo Institute of Technology Fujila Laboratory 26
Ψ	References	
[1]	T. Hatanaka, Y. Igarashi, M. Fujita and M.W. Spong, "Passivity- Based Pose Synchronization and Flocking in Three Dimensions", <i>IEEE Trans. on Automatic Control</i> , 2010 (conditionally accepted).	
[2]	Y. Igarashi, T. Hatanaka, M. Fujita and M.W. Spong, "Passivity- Based Attitude Synchronization in SE(3)", <i>IEEE Trans. on Control</i> <i>Systems Technology</i> , Vol. 17,No. 5, pp. 1119-1134, 2009.	
[3]	SJ. Chung and JJ. E. Slotine, "Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems", <i>IEEE Trans. on</i> <i>Robotics</i> , Vol. 25, No. 3, pp. 686-700, 2009.	
Tokyo Institute	of Technology Fujita Laboratory 27	