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Introduction

Robotic Network
A network consisting of multiple robots, for exdeip
« mobile sensors
¢ unmanned vehicles
Advantages of a network abetter performance or robustness against failure.
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Application

« Environment monitoring
¢ Search

« Exploration and Mapping
« Rescue

Operation of Robotic Network

Each robot has to a aatoperatively while using onlylimited information.
Cooperative Control

Cooperative Control Problems can be formulated &%ose Coordination

Problems.
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Attitude Synchronizatiore)

Attitude Synchronization with Leader
¢ Pose Synchronizatiqmn

¢ Conclusion and Future Works
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Setting

This presentation is a brief introduction of theiima
results of the following papers:

Paper: =

T. Hatanaka, Y. Igarashi, M. Fujita and M.W. Spong, ...
“Passivity-BasedPose Synchronizaticand Flocking
in Three Dimensions'lEEE Trans. on Automatic
Control, 2010 (conditionally accepted).
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sed Pose Synchronization and

n Three Dimensions

Y. Igarashi, T. Hatanaka, M. Fujita and M.W. Spong,
“Passivity-Basedhttitude Synchronizatioin SE(3)”,
IEEE Trans. on Control Systems Technology, Vol.
17,No. 5, pp. 1119-1134, 2009.

The results are transferred from 3D to 2D.
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» We consider n robots in an inertial coordinate &anp.
« Each robot has a body fixed frame
* The coordinate frames are all Cartesian and rightdhd.
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Robot Model

The robots are considered as rigid bodies:
« the configuration of the robots can be written as

&0 ]
e qi| e R*
=] @

with the orientatior?t® and the virtual position; = p; + d;, whered; is
a bias andp; € R® is the position of the rigid body and

[ 0 %z Si2
$i=|iz| = & 0 —$i |-

Tokyo Institute of Technology

i3 —$2 Sa 0
« the body velocity? = (v;,w;)” € R® can also be written as
pb — [@: i 4
e = o 0] ER

so the kinematic model is

gi=giV?

7
Tokyo nsiute o Technology

Robot Model

Model simplifications for 2D
The following simplifications hold:

Tokyo Intitute of Technology

. &6 _ |cos 6; —sin6; - ) 2x2

e [sine,- cos 6; R@O)ER
~ 0 —w;

. w,-ER—»wi:[wi OL]ERZXZ

e q,v; €R?

« |so the kinematic model becomes

)15 I
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m Network

The interconnections of the robotic network arecdbed by the graph

G=WW,EW):

* V:={1,..,n}is the set of all robots

* £ cV xVisthe edge set, which contains pairs of robotgesenting the
communication

* Wis the set of the weight;; > 0 for each edge, which represents
reliability.
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The set of the neighbors of each robot is defireed a
Ny ={j €VI(,) €€}

With this we can define the weighted Laplacian matri
Dowy, ifj=i
Ly = JEN;
-wij, IfjEN
0, ifjEN
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m Passivity

Definition of Passivity:
The system is passive if there is a continuougudfftiable positive semi definit
functiony, such that:
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. T
g < (V)
whereV? is the vector of the inputs aiff is the vector of outputs.

For this model we use:
ve =[]
i = oy
- R_l(‘gi)qi]
;= sinf; |’
If 16;] < g the values of sin 6; are distinct and we can uBg as output of the
model.

Passivity

To show the passivity of the model (in 2D) we use potential function
representing the total energy
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1 i 1
5k 0 L 0 )
Y(g) =tr 1| Us=gd"Us — g0 1= E"Pi”2 +¢(6:)
0 — 0 —
V2 vz

with rotational energy

cosf; —siné;

sinf; cos#6; ]):1—c059i20

90 =50r (1~

So the time derivate aff is
. . . . T
P(E) = Qixlix + Qiydiy + 0D = (V) i

With the input/?, the model is passive.
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« Attitude Synchronization
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Attitude Synchronization
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Definition:
A group of rigid bodies achieves Attitude Syncheation ifv; = v; Vi, € {1, ...,n}
and

Jim ¢ (6;—6;)=0vije(1,..,n}

The proposed control law is
w =k Z wysin(®;— 0,  i€{l,..,m}
JEN;
with k; > 0 and fixedv; = v; Vi, j.
Additional assumptions:
« orientation matrices of rigid bodies are posi(wel <§ v i)
« interconnection graph is fixed and strongly conedct
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Attitude Synchronization
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Proof of attitude synchronization:
We define the potential

n n
Up= ) 2p(0) = ) TH(1 - cos0))
Lk; ] k;

=1 =
withyT = [y, .., valT, ¥ > 0 Vi € {1, ..., n} satisfyingy"L,, = 0.
This holds because of the strongly connected graph.
The derivative along the trajectories of the maslel
n n

U, = Z%sinﬁi w; = Z Z yiw;; sin 6; sin(6; — ;)
i

i=1 i=1jEN;
= Z Z i [ (1—cos6)\ - (1 - cosGi) — cos §; (1 — cos(6; — Qi)) <0
i=1jEN; ( b(6)) ) P60 >0 20
] ¢(61)
with iy ¥ e, Viwij (¢(3j) - ¢(9i)) =—yTL,| ¢ |=0.
$(0n)

With Lasalle’s Invariance Principle Attitude Synchization is proved.
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¢ Attitude Synchronization with Leader
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m Attitude Synchronization with Leader

— Tokyo Institute of Technology

Now the rigid body, labeled as 0, acts as lead#r eanstant velocity and constant
orientation.
So now Attitude Synchronization is defined as

tll_)rg ¢y —6;) =0 Vie{l,..,n}.

The new control law is
w; =k; Z wyj sin(8;—6;) + c;wiq sin(68 — Bi)) , ki, wig >0

JEN
1, iftheleader is a neighborof i

wherec; = { i
0 otherwise.

To achieve synchronization the following conditidves/e to be fulfilled:

« relative orientation matrices between leader arhtsgare positive definiti
« the interconnection graph excluding leader is figad strongly connectel
« there exists at least opg= 1.
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Attitude Synchronization with Leader

Proof for Synchronization:
Use of the potential function
n

U, = z%(l —cos(6p — 6))) = 0.
=1

So the derivate along the trajectories of the madel
n
U, = —Zﬁsin(ﬂa —0) w;
L ki
=1
n
= —Zyi sin(8y — 6;) ( Z wij sin(sj — 9i) + ¢c;wyo sin(6y — 90)
=1

JEN;
n

= —Zyi <Z wyj ((cos(e,- —8,) — 1) + (1 — cos(6; — 30))

i=1 JEN =—¢(6-6o) =¢(6i—06o)

+ cos(8o — 6;) (1 — cos(8; — 6; )\ + c; wio (sin(6, — 6,))* | < 0.
05 =0

Again with Lasalle’s Invariance Principle we prowgshronization.
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» Pose Synchronization
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Pose Synchronization

Definition of Pose Synchronization nfrigid bodies:
lim (gi1g;) =0V ij (i # ) € {L,..n}
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This implies that the orientations and virtual piosis converge to a common
value.

To achieve the synchronization the following cohl@ov is used
kpil, 0O R71(8,) 0 qi —q;
vp=—" ] E (Wij[ L ] .
. 9;: — 0:
0 kEL jENi 0 1 Sln( l ,l)
R™1(6)) o] vay .
+[ 0 i 1 [wd],LE{L...,n}

with k,,;, ke; > 0 and the desired linear and angular velocitigand wg = 4.

1
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Pose Synchronization
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Theorem:

If there exists ®(,) such thar (8;) = R(8; — 8, — 8,),V i are positive
definite and interconnection graghs fixed and strongly connected, the contro
law achieves pose synchronization.

Proof of the Theorem:
For this we use the potential function
n

=Y (il + 0@ ) 20

i=1
with g, = q; — f, vq dt.
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m Pose Synchronization
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Differentiating of U, w.r.t. time results in

by —Z” i )]I SR (e
_ [Z‘; ) - _Z Z yowy; (@ (3, - ;) +sin(@,) sin(6; - 6y))..

=1 jen;

2
by completing

We can write, (ﬁi —ﬁj) = ||q]|| |q ” 2 ”‘71 q;
the square.
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m Pose Synchronization
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Also we can use
sin §i Sin(Gi - 9]-) = sin §i Sin(@i - 51-)
=—¢(6;) + ¢(8;) + cos 8; (1 — cos(8; — ;) ).
We define

- 1,_ _
U, =3l + (@) =0
Now we use these formulaslil@-

=3 S v (1 -2l -2l 0 -0

i=1jEN;

cost(1 - eos(5, 7))

n
= Z Z Yiwij (ﬁj -U;— % ||§i - ﬁj”2 — cosgi(l - cos(?i - 5,-)))

=1 jen;

Pose Synchronization

— Tokyo Institute of Technology

With

ZZ}/,W”(U—U)——y 21 =0

i=1 jeN; n

n
1 _ 2 - S
:Z Z YiWij (—E”qi —qj” —cos 8;(1 — cos(; —0,-))) <0
=1 jEN;

Now we define the set
2 —_ —_
E = {y,- esE@vi||[7,-,]| =0 (1-cos(8;-8)) =0 vi,j}
= {y: € SEQ@), vilyp(yi'y;) = 0 Vi, j}

we get

With Lasalle's Invariance Principle pose synchroti@acan be shown.
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Pose Synchronization with Leader
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Definition for Pose Synchronization nfrigid bodies and a leader with constant
linear and angular velocity, labeled 0:

tlingolp(gflgo) =0Vvi €{1,..,n}.

The control law is

e B DG W) )

+cLW0[R (6 0”sm(9 _qogo)]>,i€(1,...,n}

With kp;, key, wip > 0 and
¢ = {1, if the leader is a neighbor of i
o otherwise.

Proof and Theorem is the same as for Attitude SynchronizatiorLesiter.
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* Conclusion and Future Works
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Summary and Future Works
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Summary
« Passivity based 2D control laws were presented for
= Attitude Synchronization
= Attitude Synchronization with Leader (constantdinand angular velocity)
= Pose Synchronization
= Pose Synchronization with Leader (constant linedrangular velocity)

Future Works
« Pose Synchronization with leader (variable velesjtbased on Contraction
Theory [3]
Paper:
S.-J. Chung and J.-J. E. Slotine,
“Cooperative Robot Control and
Concurrent Synchronization of
Lagrangian SystemsrEEE Trans. on
Robotics, Vol. 25, No. 3, pp. 686-700,
2009.

Cooperative Robot Control and Concurrent
Synchronization of Lagrangian Systems

Socn-Jo Chu, Member, IEEE. s e Jcqucs Shtioe
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