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A Simple Optimal Power Flow Model with Energy Storage
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Background

The optimal power flow (OPF) problem

® to optimize a objective over power network under constraints
Minimization of generation cost

® Classical OPF : without storage

Renewable energy, such aswind power,
isintermittent.

=) Integration of renewable energy
into electric grid is difficult.
Battery is necessary!

Goal
[ To understand the impact of storage on optimal generation schedule]
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» Model and Problem Formulation
» Single Generator Single Load
* Network Case
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OPF model

admittancematrix : ¥  potential : ¥  phase: @

The (real) power flowi —j :
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ViV;Y; sin(8:(1) — (1)) ieD
= ViV, Xi00) — 0D) < Giyl) ---(1) | _Demandnode
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Net power export (from Kirchhoff's laws):
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Generation node
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Demand node: gd#) = —di{(f) ---(3) N - S
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griif) > :supply g&1) <0 :consume
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OPF model
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Each generation node :
qi{t) =gy +r) ---(4)
Generator produce Battery charge or discharge
&MN20 - (5
ri(f) <0 :charge ri(r) >0 : discharge

i€
Generation node

" generator

]
The battery energy level: o ﬂ

bi(1) = bt — 1) - r(t) ---(6)
0<bi) < B; -(D) o
Generation cost : €;{g;, ) battery
Battery cost:  hgby, ry) &)
m) Battery charge when the cost of generation is high,

and discharge when it is low. n
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OPF problem
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OPF problem with energy storage

Z D ledgilen 0+ hilbi(t), rdM)

t=1
'EGGeneranon cost Battery cost

st (1),(2),(3),(4),(5),(6),(7)
for t=1,..7

ﬂq;.gﬁ

ci{gin), 1) := %-yi(t)gf(r) : convex function - (%)

¥i{#) : the time-varying nature of ¢;(gi(f), )
hi(b;, r;} = hi(B;) : strictly decreasing
Ex. bfbi) = aB;—b;) a;>0,8:>0

m) OPF-S problem is convex program
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» Single Generator Single Load
» Network Case
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SGSL model
2.03,(4 = g@W+rH=d)

OPF-S—— ™
min Y g0 +ho) o G
=L

s.t. b_(t) =bit— D —d(t) + g(t) [dual var : (1]
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KKT condition
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+b(1) — bt + DIt < T) = &(n) — B(1)

1 : indicator function

6
db( D
= &) =H'() + B0 .
T
dh _
@)= ; —d.T;](b'(ﬂ) >0 B(f):= Z‘(g(r) - B

the margina storage cost-to-go

gN=20 [dual var : (1] A
B >0 [dual var : b(1)] L@ ¥(Ng' () = b+ M), AN (D=0
B-b(p 2 0 [dual var : 5(1)] £ = [g(l) LBOT
K for t=1,. / Optimal solution "
m) Convex program () =b"(t— D —d(t) + [8(')+ _}{E))
m) KKT condition is both necessary and sufficient for optimality Nominal generation : g(t) i= % [x]* := max(x, 0)
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Optimal solution (SGSL) Optimal solution (SGSL)
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»The case where battery constraint isinactive

K e@©.B) = B@=0, g*=§
T

Hog' W =H®) =) ‘F()“’“‘ )
oot =1

Marginal storage cost-to-go
m) ¥n)g® stictly decreases dh o

Marginal generation cost

db
Assumptions
Al:d{) >0, ¥ >0fart=1,..T. Forall & zu,dﬂb) <0
. _ _dh{B(5)) _
Al :y(0d) — vt + 1)d(t + 1) < a0 fort=1,...T

¥(H)zg" will decrease at the same rate at which H (£} decreases
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» The case which battery constraint is active : &{#) € [Q, B]
Under A1 m) Optimal generation schedule has 3 phase

1: g°() > d{f) and the battery charges
2: () = d(f) and the battery remains saturated
3: g*(®) < d(r) and the battery discharges

Definition - Tz
o1 (1 1
d= 7 Y0 --[ Zm]
1

- 1 X !
dyi=g— ), A0 F= rmhzmy(n

=+l
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Theorem 1

Suppose 01« &) < B. The optimal generation g° crosses the
y
|
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demand curve d#) at most once, from above, the optimal batter
evel B* isunimodal.

Theorem 1
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2) battery saturates
- oy - dy), 1=1,.,1

g'(0 = {d(), r=l+1,.,m
1) battery never saturates . O+ %[Jz -]t t=m+1,..T
* - Y 3 + a ol [ g0
g =g+ —[d- o] 3 1 i o e y(d(n)
y() — =13 g 2220 y~
+ . @ - T T ;8(:) ! [ |
[x]" := max(x, Q) : r : ; . |
T | -
1 _ 5(0) b oy = B — ' - '
= fZg(tH T h-:m’/’\ T -mzl T-m Fw :
= - - bO)
b (1) =Tlo - d]" L s —* b(T) = (T - m)los —da]
Total available energy : Ter ch;ge disc:arge N !
charge saturation discharge m
SGSL example (violating A1) Outline
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—T = 24 hours -
. dx
4 = lﬂ-mnT_l[r- 1) -
B =25GW g N
50y =12.5GW o e :
n=1 o0 -
"o _1 & N * Network Case
==z e
LA(B) = 2(B - b) % 5 0. 15 2

Demand decreases faster than that required for A1 to hold
m) b* discharges and recharge twice more before reaching O at T
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Network case (MGML)
Multiple generation and multiple loads =) the problemin {»)

g +ni = Yo - 610), i€g
N

~di{) = ) Vi@~ i), ieD
N

Optimal generation : g"(#) = (diag{y,(N)) " [H*(®) + B*(O]*

F
H (= dig[z —%ﬂ#(ﬂ)] BN = M[Z,@,(r) - 51{1'))]

| g0+ ]_ _[Ben¥pi=i
[Effect of network.[ Zd(e) = Yo' (5 'Y"_{-Ym I_*J_]

Network case examplel

» Symmetric network with 2 generator

¥=1

§ij = 1000 cw

T = 24 hours

B =16 GwW

1 b =80W

dit) = 3sin % + 1
T

hib) =B;— b;

L =1

Pawer (GW)
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Network case example2
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» Cost savings (SGSL case and network case)
=) How much cost can be saved compared to total cost without battery?

_ saving k\r_ SGSL | saving Tor _.\1(-.\1[.
{?f(ﬂﬂ e -
timevarying y«t) - u.,.i.[:m - c.-z.:—:m
Link capacities are not symmetric % e R

35;

=) Generator 1 < Generator 2

»>With time-varying %¥i,

| 3
\ i
the cost savings are higher 15 .o

Power (GW)

g on B
GW

¥ 8 8

107 10
> Battery is more valuable o )
in the presence of fluctuations) o

L] 10 20 30 L] 10 20 30
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Relationship Between Power Loss and Network Topology

in Power systems
Javad Lavaei and Steven H Low
California Institute of Technology
CDC

»How the minimum power loss in a power system is related to
its network topology? 1 .

=
min RefV.[})- ) P _
SLVL = Py — Qi &

Ivnl =V
I=¥v

B Pi : the minimum of the active power loss
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LMI Optimal Problem
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LMI optimization problem

1 ¥—1
max fLA0:= ) APi+ ) - pVy Prin
=1 k=l

a1 r—1
8.1 (A, A, ) == Z.im + Z‘_‘*?” Y+uMz0
k=1 =t

weak duality theorem m) O < Ppin < Ploss
(The same appliesto Q)

»The feasibility region is defined only by the network topology

m) makesit possible to address many important power problems
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A Magjorization-Minimization Approach to Design of

Power Transmission Networks
Jason K. Johnson and Michael Cherkov
Los Alamos National Laboratory
April 13,2010

Background

Network Optimization Problem
 Selecting Network Structure
Robust Network Design
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The power grid of today was not systematically planned
but grew in a piecemeal fashion.
) The greatest engineering achievements of the 20" century
However...
»>This status quo is now challenged with
increased demand and stress on the
aging network.

» A shift towards renewable source energy | ... Ll
will further stress the grid. e B ?

m) |tisimportant to incorporate new and extend existing
infrastructure in a systematic way.

Suggest an efficient algorithmic approach for optimal
or close to optimal power grid design

The Network Optimization Problem
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Goal : to assign conductance & to balance
(2) maximizing network efficiency
(2) minimizing the cost of building the network

The cost of building the network :
a'e= Z b
i

a; = cg_l s s7 : total length of linel

¢  price of copper
£ : conductivity of copper

Optimization problem power loss (convex) penalty

m— | gggma)wml’o; ]

A > : Lagrange multiplier

C : budget
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Convex Optimization Algorithm

graph GG : w X w grid of nodes
lines between nearest and 2" nearest neighbors

min( £6) +a"8-¢ ) logb) | £2°, wins(6)+a"0)
G 4 = =1
Log—barrlier function

=) The solution will always be strictly positive.

Algorithm
[ updating iteratively the solution : ]

m) large { — small £
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Demonstrations
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Sparsity-Favoring Network Cost
[ miniL@) +a'o+pT0@) | w0
620 1d
¢(1) : unit-step function, concave
discontinuous S t
B #8) : other cost (ex. labor)
Annealed Smoothing Method
r
bi)=—"} »>0

=ty )
. concave, continuous

“deterministic annealing” strategy

Majorization-Minimization Algorithm

objective function : f{x) = £ix) + fn(x)
convex  concave
linear upper-bound of fr{x) :

Jalx) = ﬁm(x;"’) + V(T (x — 2%
previous guess of the solution

=) f(x) < £,(0) + Virx*) x + const

convex function
= 24+ = ang min} f4(x) + V(P x)
iterative algorithm

independent of X
P @

=8 ¥
large ¥ : éy{N =0 mm) convex optimization problem T a;(k) =g+ ——————F
= (k‘[)
| update iteratvely f.@®=L@)+a'8 » ) +a )2;; .
small ¥ : éyl) — @(r) m difficult combinatorial problem 7@ =5 8,0 gF = "rg',,‘;’,,“lﬂﬂ) + (@) g)
Tokyo Ingtitute of Technology _M Tokyo Ingtitute of Technology = Fujita L abor atory 2
Demonstrations (Sparsity-Favor) Robust Network Design
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z € §0, 1}™: indicator vector of line failing

operational  failed
power dissipation after removing failed lines:

LG D2 L(1-z)00)
The worst case power dissipation : £¥(8) = Ernnz_zé.ﬂﬂ; )

al entriesone

™~
=) [%ﬂz\*(m +a 0+ 8 ) ] non-smooth

Gibbsian “ Soft-Max” Optimization
LM =rlog ), explr ' L6;2)] , T>0

(=
m) smooth, convex, upper-bound to £4@) , £¥* — £ (r - 0)
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Demonstrations (Robust Network)
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Appendix
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Karush-Kuhn-Tucker (KKT) conditions
max f(x)  stgl{x)<0
b_,-{x) = 0

the Lagrangian

Lxdpy= f(®) - ) dgilx)+ Y, uihy(x)
i i
Supposethere exists constants A; > ( and ;tj such that
() ZA, Bxy+ Z, (x‘) 0 Vk

Aigdx") =0 Vi
m) thefirst-order necessary condition for optimality

Resistive Network Model
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G : graph with node set ;¥ = {1, ..., s} and
m (undirected) edges [, j} € G € 2¥

edge weights @ = @8z =€ — conductance
B, izj
Yy, i=j standard basis vector
=) K(0) = ADiag(¢)A” , Diug(6) = Zeme{
b e B¥: the vector of injected currents
B; > 0:sources, & =0: transmission , &; < 0: sinks
u e BY: dectric potential

= Ku=h) [WEKe20

hasasingle zero eigenvalue: KL =0

Ku=tuwy 1Ty=0,4>0 ﬂ

Conductance matrix : Ky (8 =

al entries one

Resistive Network Model

To determine the unique solution

wu=Kb. K" 2 (K +117)"!
the current flow fromitoj : by; = & (a; — 1t;)
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u;

The total power loss over the network :
L= Z 0;(u; — u; = u’ Ku
ijec
If Gand b arefixed: L&) = b (K@ + 117 b
The expected power loss for arandom current :
L(8) = (bT K*(8)b) = (THK T (DbbT))
= THK*(8Xbb")) = THK(O)B) B % (bb7)

=) convex function

=K'A
= B Kb

DC Approximation to AC Power Flow
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The (DC) resistive network can be used to approximate the AC system.

#; m) complex potential : &/; = expie;)
rea 4;: the phase of the potential
» Susceptance is normally an order of magnitude larger than conductance

DC-approximation of AC Kirchhoff equations
— F : the vector of real power
p=Kg P power
K: network susceptance matrix

first order in the conductance-to-susceptance ratio

D L= %pfi‘*xi‘*p KT 2K+ 1"y

conductanceto—admittancelratio M P
»E=;K = £(9)=?TI(E+B)
w
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