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Background - Network
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: rate of source 
route r’s transmission

Utility Maximization in Networks

: traffic source
Network 

each source is associated
with a route r

Constraints

Utility

1n

2n

3n

4n 1: xs
2x

3x
link1

link2

link3

: the utility that the source 
obtains from transmitting 
data on route r at rate xr

example

: link 1

: link 2

: link 3

Constraints

Utility
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Background – Lagrangian
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Convex functionConcave function

Strictly concave function

a strictly concave function has
a unique maximum 

Lagrangian

strictly concave
strictly concave

convex

Utility constraintsLagrangian
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Background – Karush-Kuhn-Tucker heorem
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example
min

constraints

(1,2)

1x

2x

Karush-Kuhn-Tucker theorem

the optimal value      and constraint’s grad is Linear independence, 
then there exists constants     such that

strictly convex
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Primal Algorithm - example
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Utility 

link Penalty

Primal Algorithm - rate-update functions at source side
example

:Utility

:Penalty

not to exceed link capacity cl

We want to maximize 

Penalty

Utility

: link 1

: link 2
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Primal Algorithm - example
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Primal algorithm

strictly concavestrictly 
concave

convex

( )rr xk : non-negative,increasing and continuous

when V(xr) is maximum at point                , ∗∗
21 and xx rx

rr xU log=

2
rl xB =

( )rxV

lc

( )∗xV

( )xV

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Primal Algorithm - example
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Primal algorithm

x1 =    0.3827
x2 =    0.5412

k1(x1) = 0.01
k2(x2) = 0.01
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Primal Algorithm – Penalty function
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Penalty function

: utility (strictly concave)

: the arrival rate on a link l

congestion 
price function

: increasing, continuous
function
: convex function

( )yfl

( )yBl

Network utility maximization problem

Bl(.) increases when the arrival rate on a link l
approaches the link capacity cl

y
lc
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Primal Algorithm
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the condition of miximization

Primal algorithm

: non-negative,increasing
and continuous

drive x towards the solution of 

drive xr towards the direction of ascent

strictly concave strictly concaveconvex
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Dual Algorithm - example
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Utility 

Lagrange dual

Link capacity

example

: Lagrange multiplier

Dual Algorithm - price-update functions on each of links

: link 1

: link 2

The Dual problem

constraints
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Dual Algorithm - example
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Lagrange dual

The Dual problem

Dual algorithm

calculate

We need to descend down to gradient           !
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Dual Algorithm - example
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Dual algorithm

c1   = 1.0
c2 = 1.5
ω1 = 1.0
ω2 = 3.0

x1 =    0.3750
x2 =    1.1250
p1 = -1.2723e-013
p2 =    2.6667

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Dual Algorithm
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resource allocation problem

constraints

The Lagrange dual

: Lagrange multiplier
The Dual problem

Each link has a capacity

price

utility 

costraints

To find the direction of a gradient descent, we need to know
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Dual Algorithm
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The load on link l

The price of route r

Dual algorithm

pl increases when the arrival rate is larger than the capacity

Q

We need to descend down to gradient           !

Before derive       , we calculate         and 

Q

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Outline

• Ｂackground
• Primal Algorithm
• Dual Algorithm
• Primal-Dual Algorithm
• Power network

1818



Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Primal-Dual Algorithm

19

Primal
rate-update functions 
at source side

Exact form of the update were different in the two cases!

Primal-Dual Algorithm

Dual
price-update functions 
on each of links

in wireless network, 
interference among various 
links necessitates  scheduling 
of links

: time of rate
scheduling

1n

2n

3n

4n
1: xs

2x

3x

Rij

time

43
42
24
14

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Primal-Dual Algorithm
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each flow has
a beginning node 
a ending node⎩
⎨
⎧ ( )

( )fe
fb

Primal-Dual Algorithm - flow base functions

( )
d

ioutR

( )
d

iinR : inflow rate (destination d at node i)

( )fb

( )fe

( )
d

iinR

( )
d

ioutR
i

d
: outflow rate (destination d at node i)

the arrival rate is less than the departure rate

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Primal-Dual Algorithm example
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Constraints

Lagrange function

Utility 

constraints

Utility 

Decoupled

1→3

3→2
2→3
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Primal-Dual Algorithm example
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the congestion control problem

the scheduling problem

the primal algorithm
at each source  f  

the dual algorithm
at each node i

destination d ⎩
⎨
⎧

Primal-Dual Algorithm 

calculated at each time instant by solving the scheduling problem
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Primal-Dual Algorithm
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the optimization problem

each flow constraints

Lagrange function

idp : Lagrange multiplierDecoupled

i → d

xf’s terms R’s terms
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Primal-Dual Algorithm
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Lagrange function

the congestion control problem the scheduling problem

the primal algorithm
at each source  f  

the dual algorithm
at each node i

destination d ⎩
⎨
⎧

to solve the congestion control problemPrimal-Dual Algorithm 

calculated at each time instant by solving the scheduling problemcalculated at each time instant by solving the scheduling problem
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Power network
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purpose
to supply each building demands 
for energy ri

constraints

Utility function

battery

batterypurpose
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Power network
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constraints

a→e

b→f

c→g

e→a

f→b

g→c

d→e

d→f

d→g

Lagrange function

energy to building line to charge battery

energy to charge batterybattery to building
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Power network
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the congestion control problem

the scheduling problem


