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Review (Game theoretic approach)
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Global objective function

Local objective functiory l \ \
agents ) @) @) @)

A, :Action set A=T]1 nep A setof joint action

a_; = (a;,a,, ,a;_;,8;,;," ,a,)
mmmms) jointacton @ = (&;,a_;)
Local objective function U , : A » R

1. Designing the player objective function
2. Learning dynamics (repeated game)

(ex)single stage memory dynamics
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Control design

Review (Potential game)
Global planner @ : A — R

(potential function)
‘ aligned

Make player’s objective function U,
Ui.(aj,a)-U(a;,a_)
= ¢(aiu1 a~i) i ¢(ai"avi)

Changing in the player’s objective
function
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Changing in the potential function

Every agent select an action to maximize their objective

function
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Outline

Near-Optimal Power Control in Wireless

Tokyo Institute of Technology

Networks: A Potential Game Approach

and Pablo A. Pamilo Laborascry for

» Background

* Mode

» Modified utilities

» Near optimal dynamics
« Convergence analysis
« Simulation Result
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background

CDMA system

Tokyo Institute of Technology

Mobiles’ rates

PP
SNR(P)=——mm
R(P) T S

Transmit f
information The signals of other users
are noise
7 . rate
Base station r.(P)=logl+y SNR(P))

cost C,Pn

mobile\ [ \ B
‘/</;A/ net utility ‘v
. Un(P) =1(P) = {1 GinPrn

Base station

Maximize net utility
Tokyolnsituteof Technlogy w

approach
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Situation : Self interested . Thinking of
Maximize own
Interfere with each other utility
Object:  Design of power control
Tradeoff ‘ Centralized optimization problem
rate <€=» cost with full information

— difficult for complex

L'*‘n( p) = rm( p) _é/mci‘npm

General distributed power control

Potential game approach -
Originalgame § ——» Approximation game g

Best response dynamics ) . *
Set optimal price C

Converge within neighborhood

of the optimal operating point Converge to the optimal operating point,
Tokyo Institute of Technology _MM
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Background

Model

Modified utilities

Near optimal dynamics
Convergence analysis
Simulation Result
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model
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° ° mobiles Power allocation
Ny [l M=fLeM P=(pyon)
* -8 SINR
= f P
matiie} .I|' ~ _.II'; SN P — hrm m
ot TROTES hR

h<m :gain between user k and transmitter
m’s base station

rate

rm(P) =logl+y 3 NI%(P)) Obijective function (net utility)
Tost Gy, L4 NCRECREE)

Py : transmission power .
- User specific rate vs money
0= P < Pn<Pny Tradeoff coefficient
Tokyo Ingtitute of Technology Fujita Laboratory 8

Power game (definition)
Power game .
g=<M ,{um}meM g pm}mEM > Self mterzsted
T [nea;( um(pm!p,m)

m'’s objective function ~ m’s action set Pm€ Fm

Nash equilibrium (NE)
u (p)=u, (P, P,) YPme PnVYmeM

€ — Nash equilibrium
Un(p) 2 U, (d,, P_p) —€ Ydn€ P, Yme M

Central planner wishes to impose some performance objective

mm) System Utility Eex) U,(p) = Zm r.(p) ]

ngeag( U 0( p) Sum rate objective

=% Optimal solution P (desired operating point) ﬁ
Tokyo Intitute of Technology

Modiified utilites
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modified Utility r(P)=logl+y SINR(P))

- ~ INR(P)=— P

Uy (P) =T(P) = £GP l R
Approximation _is good

fr‘n(p) — Iog(y S| NF%(P)) Spreading gain y>>1

‘ Can make potential function
AP =109 =4 Gy
’ " (P P.) =90k ) =T (o P) =T G P-)

[Strictly concave = unigue NE]

Potential game
g =< M 1{Gm}meM 1{ pm}meM >
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Assigning prices
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Assigning pricesC* to coincide with NE of § and p*

U, (P) =1 (P) — £GP

[Theorem]

Let P* be the desired operating point .Then the prices C* are given by

=P meM

(proof) Ap) [Strictly concave = unique NE ]

—» Maxima of @(p) is NE [¢(P)Z|09(Pm)—§m0:npm
L S (A
% n o T,

=) [ Global maximum of the potential
Tokyo Ingtitute of Technology _ﬂmm

Near optimal dynamics
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P’is not NE of the game 9 with ¢

=—>» Converge neighbor of p* ?
Best Response dynamics

Pn < pm+a(ﬂm(p—m)_ pm)

Best Response 8 ,(P_) = &g max U, (P Pem)

Pmé€ P Olis small
most good action for user m

pm:ﬂm(p—m)_pm I —
g with c=C —— Convergeto P’
BR (Lyapunov analysis)

How about 9 ?

Tokyoinsituteot Temology _M
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Background

Model

Modified utilities

» Near optimal dynamics
e Convergence analysis
Simulation Result
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Convergence analysis
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Best Response of Bm( P_) = arg max U, (P, P_y)

Pmé€ Py
=arg rTF]ax O(Pry P_m) (From PG)
Pm€ Fm

e -equiibria of § T, ={p|Ty(Pus Pon) Z Uy (Gys P) — €}

[Lemma]
The BRin 9 convergeto |, e< 1 Z;
SNR (P)=M Y mem SNRminm
T Nt Y P

(proof) @ . maximum value of @

V = 5 —¢ >0 : Lyapunov function

Tokyoinsituteot Temology _M

proof
_V = zalwm(p—m)_ pm)
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¢(ﬂ(p ) =B ))

n’EM
aaf(ﬂ(p )= )2 (B (. )p )T (P Py)
‘al(ﬁmm) Bip i [pl ]

[

N%J
P i N
11

V2 0 (BoP). P~ T (P D)) Y p

2

5

7
3 @ (B Py o)~ TP P) J

)| , g
) V < mm?m
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proof
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= Sm
> _om
( oD, o)~ (P P0) n;;pm.nm
‘ V- z%
meM J’pm
Converge to this set from Lyapunov method

0B (D). P )= T (Pr D) wai
1 1
= esly i

minm

@\ (i, ={p|g o (P Do) 2 U (s P) =3
V<
e o
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How far ?

How far the set of £- equilibria of g from p'?
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[Theorem] _ L= - =~
Pu—Pu|<PV2e  Pel,
£ -equilibria of @ — Global maximum of the potential

I, ={P1Tn(Prs P) = Ty (U P_) — €}

(rooh . — - -
(S (I P

—> (log(p},) ~ 4P, 109®,) ~ 4P < [ﬂp)=2log(pm)—§mc;pm]
- fm(p;])—fm(—ﬁm)ﬁé‘ (fm :Iog(pm)_;tm pm)

Togoindiuteol Temology _mM

proof
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f=109(Pp) = A Pr

= 129 f (P + (P = Py))

> 3= )+ (= P e 2 ) =

P’ Is desired operating point
f(Pr) _ 99(Pw) _
I TR

. ~ 1 2
- fm(pm)—fm(Pm)=§( - Pu) m

—> 2p, + (B ) (T (P) = T )= (P~ B)?
—> 202> (p,-B,f (P fu(B)<e0< P, B <Py)
—> [P Pp|< P2

Tokyo Institute of Technology




Near optimal performance
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Near optimal performance in terms of system utility

Performance loss decrease with small € [(ex) U 0( p) — Zm rm( p) ]

increase with large L, L, s biect
um rate objective

1 1
<= P —
[Theorem] Let e< p "EEM SN then

'minm

(1) U, is Lipschitz continuous function ,with L . Then

Uo(P)-U,(B)|<2eL [P

Outline
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Model

Background

Modified utilities

» Near optimal dynamics
» Convergence analysis

(2) Assume that U, is a continuous differentiable function such that e Simulation Result
au, . ~ =
Pt Then (P -Uo(P|s2e T RLL,
meM
Difference between p and p m) Difference between
Uo(p') and Uy(Pp)
Toyo nsiuted Tehniog w Tago niuteolTecny _EMM
Simulation result Simulation result (system utility)

Tokyo Institute of Technology

hrum
No+2 P
N,=1 h,e[02] h, e[24]

*Three users SNR(P) =
-desired operating point p° =[5,5,5]
r(P)=logl+y SINR(P)) 7 < {51015
Do the BR dynamics with c
]
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Sum rate objective

Ug(p) =3, ralp) ™ T Vo(P)

[Theorem]
U, is a continuous

differentiable function

Po

Uo(p)-Uo(P)|<V2e(M -1

meM T minm

U M -1 . - =
t * op,, . Prinm (‘Uo(p )_Uo(p)‘S V2e Z PmLmj
et &
_Zoptima_l___
Convergence *. Convergence o |
Some point? .~ Speedis good Uo(p) ! ‘\2{00><7U°(p ) 9°(p ) (average)
s 3 \\ 0
i L e Monotonously ] \
= ! . | increase 14 “\Even in small ¥
‘Big y is good ‘ Monotonously decreasing | Quite small !
1 1 A
e<=y —— —— i
me SNRmmm
S 4L w Tokyotnsiueat Tecnclogy _EMM
Generd type Theorem of Projection
Tokyo Institute of Technology Tokyo Institute of Technology
u, > 0 > U, e . — ~
Find the most close Find the most close [Theorem]  Optimal projection
potential function objective function i
of the game by U of @ to Uy &= (Z I'Im) 3 M

2 N . _mll2
am =argmn"um—u”‘“2
a” —

’ DmﬂmT:Dm

d (g)=r;gg~6o¢—n§omum

D,,: Difference \N"(p,q) =1 p=#(q
(DBABY =W'(p.9)@0)-KP) W'(p.d)=0 p=q
. 2Dtk = 2 Dip=d9
otential game feary! m

[ D,u,=D.¢ ]—> Combinatorial 8= sz

gradient operator

Togoindiuteol Temology w

meM

\_

0™ = (I - Nyu™ + N, (Z nk) > Mew. N, = D50

me M

ket

K[T heorem]

d : game
\__ g : projection

Any equilibrium of g is an €—equilibrium of 9.

keM m/
\

2

8<_V2d(g) dz(g):gs]ig]
u,(p)=2u,(q,, P.m)—€&

5,0— Y D,u"
me M

2

of the game ¢

Tokyo Institute of Technology
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Coverage considering wirel ess network

Base station
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[l Searching agent

B Information transmission
agent

< Information from [l to [l
<— Information from [lito [l
Object : optimal coverage and

make small transmission cost of information
=» Several Information transmission agent needed

Agent can change from [lto [lland from[ilito [l
Er— _M

Outline
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Distributed Dynamic Reinforcement of Efficient Onteomes in
Multiagent Coordination and Network Formation®
Grorgios C. Chasparis! and  JefT S, Shamma

Newember 7, 2006

Background

Reinforcement learning

* Asymptotic stability analysis

» Dynamic Reinforcement

« Asymptotic stability of RADR
« Simulation Result
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Distributed network formation
Tokyo Institute of Technology
/1 \ 1
i . 2 / \3
wheel ne_t\/\(ork R Non-efficient nash network
— Efficient network )\, -+ 10 make it
Reward
R(@)= IZ_Xa(' HS)_’%“%‘ X(i9)=1 :g,contain the path (i «9)
s=l,sA4
connection cost 2.(i<9=0: otherwise
reward

Actions of agent
(ex) A={{3{2{3 {23}
Nash network
o Nashnework €mmE) R(&.0/)2R(¢.d;) oeA\d
wheel network
Connected network is uniquely defined by a path (i <)

mm) Every agent realizes its maximum possible utility
Tokyo Instituteof Technology w

Reinforcement learning
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Learning algorithm

% (k+) =X (K)+e(KR (K)o (K~ (K)]

Propensities of action reward  Action at time k

2 02 02 0.8
(ex) =2 —_—> 15

@ 1%(9={03 Doaction 1 x(k+)=|03+, >|-03

/3 05| and get reward 1.5 os| Y _os

Probability of action selection 1
oK) =1-xK)+4—1

Random selection

E(N] -t

Pmpensﬁi; e X (K) evolves over the probability simplex
proportional to the » Aq A‘) (AM ={ve R"|v=0Tv=1)
cumulative reward

Tokyo Institute of Technology

Asympotic stability analysis
% (k+D) =X (K)+£(K)R (@) os () — (k)]
g (x(K)) =T (x(K))— R (x(K))x (K)
F(xK)=ER(@k)a () 1XK)]  R(¢k)=ER @) XK
&(K) =R (adk))ex () —x ()] - (x(K))
X (k+2) =x (k) +&(K)[g (x(K))+& (K)]
[proposition3.1] (ﬁ>? deterministic

x(k+1) = x(K) +£(K[Gx(K))+E(K)] X =3, x,(k)}

/

X(K) convergence to an invariant set of the X=g(X)
AcCA be alocally » Pfﬂ(i mx(k)e A] >0

Asymptotically stable set

for X=0(x) o)
Tokyo Institute of Technology

Asymptotic stability analysis
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Stationary point

%=g() mmmp S={xe X:g(x=F()—RX)x=0

proposition3.2]  (4>0)
X linearly unstable stationary point of X=0(X)

—) Pr[lkimx(k)=x*]=0
Expected reward V(j,X)=E[R(@)|¢=],x; =X;] X €S

proposition3.3] (Stationary point)

V(. x)=¢ JeA
Expected reward not
change by one agent

X stationary point of

x=9(¥)

Tokyo Institute of Technology




proposition
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[proposition3.4] (pure strategies) (/1=0)
pure strategies profile —» stationary point of X=g(X)
[proposition3.5] ( sensitivity of pure strategies) (ﬂ >O)
. Exist a differentiable function
X pure strategies profile v (A) such X=X +v (1)
and strict NE stationary point of X=g(X)

(imv' (4) =v (0 =0)
[proposition3.6] ( LAS) (1>0) A0

X Locally asymptotically v (J ) @ >V, (S,)~() ‘viSe A\ J
Stable point of X=0(X) * X =e.
[proposition3.7] (4>0)
V(i X0>V(sX) Vse A\ xistict nEm) Prlimx(k)=X]>0 (rom p3.6)
V(i X)<V(sX) Tse A\j'xnotne mp Prll|mx(k)eB (x)]=0

Neighbor of X
Tokyo Ingtitute of Technology

Outline
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Background
Reinforcement learning
Asymptotic stability analysis

» Dynamic Reinforcement
e Asymptotic stability of RADR

Tokyo Institute of Technology

Simulation Result

_M

Dynamic Reinforcement

Before depend only on . Also affected by the history of
the probability distribution X

Goal is to investigate the effects on convergence to an

Efficient pure equilibrium
Learning algorlth
X (k+D) = x () + ()R (k) (K —x (K]

Propensities of action ~reward Action at time k

Probability of action selection M,[X= argmnix 4

6,00 =T1,Ia-AX K +u Q)+ 1
Correspon()jgto ‘A‘ &)= k+l
history of

U =27 K)&K-yK) %K) : RADR parameter
Yi(k+) =y (K +eK (XK -¥(K) Running average of X

Tokyo Institute of Technology

Asymptotic stability of RADR

Tokyo Institute of Technology

x(K) !
Z(k)[y(k)} Relevant
O

ODE

a0 (X () =X + N ()
O ||y 0= +N 1)
0) (_opt)=pt)-p

=AM

a s (;)e;peirld onyp &0
YJ [ ] - dt 0

R@~p) jinearization 0

-
[Theorem 4.1] (LAS of RADR)

RADR parameter
Y(ix9+1

equilibrium Z=(X,Y,p) is LAS point ofl l O<7(p(k))< 1 VSij’

linearization

Y(sX)

(J X)+1
)

/TTheorem 4.2] (RADR convergence)

0 (A () HL 20+

-1 Vs=j' Wi »Pr[bmx(k) X]>0

%(ﬁ(k))zw'—l 32’3 = PrimK)=%]=0

. V(sX)
£ K+ =p (k) +&K)(R(aK))—p (K)) Running average of R(c(K)) -
example Example 2
2A 2B (ase1) a>Cd>h(a—c)>(d-b),a<d 24 28 >8,>0,d, =a,d,=a,b=c>0a>cd >b
1Al aaTee] (casel) , , 1Aaabe| &>&%>0d=8,d=3b=c>0a>cd
18[cb | aa mmp (AA) risk dominant 18 cb |d,d, mmp (AA) Desirable for agent 1 (a<a)
Symmetric coordination (B,B) payoff dominant Asymmetric coordination (B.B) Desirable for agent 2 (al>a2)
game < (AA) > game
(B.B)
Y +1 o
0<x(AK) <2 v(R) -1 Vs#]j = Only agent 1 o)
¥(sX) o  gbm a—cid d-b (B.8) )
” S D c —b+1 a—c+1 o —
a—c+1 Positive probability of convergence to (A,A) T<7/<T - —I-———l——--—l—-)o o aert

‘d b+J‘< <
b 4 c Zero probability of convergence to (B,B)

(case2) a=2+20,b=1-6,c=2d=1
mm) (AA) risk and payoff dominant

AA) _ (BB
¢ )E (B.B)
0 2541 o
2(5+1< 0+l Positive probabmty of convergence to (B,B)

2 4 1-6 Zero probability of convergence to (A,A)
Tokyolntueal Techology _M

=

Tokyo Institute of Technology

b c

Positive probability of convergence to (A,A)
Zero probability of convergence to (B,B)

The agent that applies RADR destabilizes the less
Desirable equilibrium in favor of the desirable one

_ﬂmﬁm




Payoff dependent 7
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2A 2B AA) ) )
> Risk dominant but not
LAl aa | be (B,B) Pay off dominant can’t
1B| cb | dd : . +—> destabilized with constant ¥
Symmetric coordination 0 a—ct+l  d-bii

(A,A) payoff dominant
(B,B) risk dominant

“Can't be destabilized
%(/).)=% RADR parameter 1

game c b
a>c>0d>b>0,(a-c)<(d-b),a>d

Positive probability of convergence to

| a-c+1b (AA)
d-b+1lc dK.d—bﬁ-l a—Cc+1l

d b <k<a c Zero probability of convergence to
log ~ (B.B)

K>

» The risk dominant equilibrium is no longer stable
in favor of the payoff dominant equilibrium

Togoindiuteof Temology _M

Outline
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» Background

« Reinforcement learning

» Asymptotic stability analysis
¢ Dynamic Reinforcement

e Asymptotic stability of RADR
o Simulation Result

Tokyoinsituteot Temology _M

simulation
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3 agent 7
Actions of agent %(2)="F RADR parameter

A={ABC,D} 1
A={{3{2 {3 {23} w=, 7€(2/33/2)

A ={{${3{3{13} ‘ Non-efficient Nash network
A={{1 {2 {3 {23} is unstable

Tokyo Institute of Technology.

Outline
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Designing Games to Handle Coupled Constraints

Na Li and Jason R.Marden

Background

Noncooperative Game and State Based Game
» State Based Game

Gradient play

Tokyo Institute of Technology

Background

Tokyo Institute of Technology

Coupled constraint game e challenging

In many systems , the emergent global behavior
must satisfy a coupled constraint on the agents’ acting

(ex) Consensus Y. @V(t)=> @v,(0) Formation control
Power control <N ieN
problem
Whether can utility design be effective for dealing with
these coupled constraint?

Do all pure Nash equilibrium satisfy performance criteria
that include coupled constraint?
—» Noncooperative game is not suitable

‘ Adding an additional state (State based game)
—>» Can satisfy performance criteria

Tokyo Institute of Technology

Noncooperative Game and State Based Game

Tokyo Institute of Technology

Usual consensus algorithm  Sensitive for environment uncertain

V)=V (t-)+= 3 (v, (t-1) -, (t-1) mmp T om0 =3 av©)

@, jen,
Noncooperative game

a’ Pure Nash equilibrium
Cost function

2 x_x . *
Jvv)=> \/i—ij2 Ji(a,a_i)=gn£J.(a,-,a_.)
ieN;
problem

« Any Vv, =V foralliis Nash equilibrium

+ under the constraint like 2,@V(® =2 v ()
any feasible action sets is Nash equilibrium

=) Convergence to the weighted average
is not possible

=)  State Based Game
Tokyo Institute of Technology _M
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Noncooperative Game and State Based Game

State Based Game  [X(t) € X :State
Cost function Select an action & by J,

J i XXA-R (ex)a (e agminJ (x(t).a ,a, (t-1)
State transition function
f: XxA—> X X(t+1) = f(x(t).a(t))

State Based Nash equilibrium
for every state __

xe X(x,a : f)
‘]i(Xvaﬁ*'a:i) = r;,rllp ‘]|(Xvaﬁ 'aii)

[x.a] is State Based .,
Nash equilibrium

Reachable State
X(x%,a%: f)={xx" x*--} , x" = f(x*,a%
[ [x.a] is State Based __, [%.a] is State Based
Nash equilibrium Nash equilibrium

Tokyo Institute of Technology.

State Based Game
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Coupled constraint on player’s value

¥

Coupled constraint on player’s value and bias

state X=(v,b)  Action & =(¥,b)
Change bias using neighbor bias information

f'(x,a) =V, +V,

fP(xa)=b -7+ (6~

=) > ovi+) ob =) oV

ieN ieN ieN

Can think constraint !

Tokyo Institute of Technology

State Based Game

Tokyo Institute of Technology

Goal is to make cost function which
induces Nash equilibrium

X =(,b)

VI:ZiENw'Vi(O) b'=0
/[theorem] \
Cost function is J; (x,8) = J!(x,a) + JP(x,a)

J'(xa)= Y (@ +o)|V+9 (v, +\7j)Hz

s
~ 1 St
bj -V +;ZkENJ/(]}(ka _bj )
i

[X,a] =—>

I (xa)=> o

jeN,

2
[xa] is State Based _, =2..,ou0 , b =0
Qlash equilibrium 4=0, X, @6-5)=0

Tokyo Institute of Technology

Gradient Play

Tokyo Institute of Technology.

-2 Desirable global behavior]

State Based
Nash equilibrium

Make learning algorithm which ensure that
the agents to reach the state based Nash Equilibrium

Gradient Play
7 ()= Ze{

@b 0= X (@ +o)(v (1) -V (t))}

jeN,
b (1) = 2¢¢ [ (1) b, ()]
From Cost function, Potential Function is¢(x,a) = ¢"(x,a) + ¢°(x,a)
#"(x,a) :%z > (@ +wj)HV| +¥, - (v, +\7])HZ

ieN jeN;

#°(xa)= za)'b' -V +%|ZkeNJ{i) (BL _Buk)

ieN

2

2
Tokyo Institute of Technology

Gradient Play

[Theorem] Under Gradient play

Tokyo Institute of Technology

Stepsize & &

is smaller than C/2

9%p(x,a)
d%a

—  DX®.aW] convergence

exponentially to [(v',0),0]

C= V=2 v

2

Proof is using .
‘]i(x’ai’a—i)_‘]i(xvai -a—i): g(x,a;,a)-g(x,a;,a)
Simulation result
T z e Main role

""" first ¢

Y

gradually g°

S — e

Tokyo Institute of Technology

Outline
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Game Theoretic learning algorithm for a spatial
Coverage Problem

Ketan Savla, Emilio Frazzoli

 Environment and Purpose
 Potential Game

Tokyo Institute of Technology




Environment and Purpose
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Environment workspace Q
@ : density function jQ p(q)dg =1
P (1): service requests generated in [0, 1) .

Spatio-temporal Poisson point process
Process generating service requests is
Prf card ((P(s+t)—- P(s)) nS)=Kk]
_ep( —Atg(s)(Atp(s)* 2 (S)=[e(a)d
Kl : tempdral intensity
» Expected number of targets generated in At, S
E[card ((P(t + At) - P(t)) N S)] = AAtp(S)
Service request is fulfilled when one of agent
move to target position
Agentmodel P;(t) = u,(t) ||ui (t)” <1

Tokyo Institute of Technology

Environment and Purpose

Tokyo Institute of Technology

Assumption « Agents stay most of time idle
A — 0" =) « Go target position and come back reference
point before next target emerge
Expected system time

E[T,]= [, min|pi(t;) - allp(a)dg
System time under the policy 7

T =lim__ET] 7z={7,....7} _
=) Expected time a service request must wait
purpose

Want to make policy which achieve optimal performance

T

opt

=minT_  with game theory
a2

| Usually use Voronoi centroidal low

n =argrs;r\9ip.[%(p)\\s—q\¢(q)dq ipt=(2éQiZ::L(p)Hn —q‘(/’(Q)dq

Tokyo Institute of Technology

Potential Game

Assumption
sLocation of a resource is broadcast to all agent
*No explicit communication between agent

Tokyo Institute of Technology

r.(g,7) :agenti's reward
r.(q,7) = max{0,min,

| _qH_H”i - qf}

- L positive only i is most close to g
utility

u (., 7)) =EJ[r(q.7)]
= [, max{0.min |z, ~ o - |z - a}¢(a)dq

= _[/ - (min ;|7 - QH— Hﬂi - qH)qo(q)dq (from Voronoi cell)
I _m
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Potential Game
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utilty u (77, 72) = B[, (0, 7)]
- 3 [, m-do@a-3 ], -dlptca

Potential function,

() =_; [l ol ~cloteda Toe =MiNT,

Equal to global objective function .
— = g ,J m rom Voronoi
Uy(m)=-T, =-2, fywlm = alo@da ) sonioroidal low

v

» Equilibrium strategy P (f), =argmigL(M)Hpi—qH(p(q)dq)

peQ V(P
is an efficient pure Nash equilibrium for this game

» Use learning algorithm to go to an efficient

pure Nash equilibrium
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summary
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necessity difficulty
@ @
@ 0O
() @
@
originality applicable for my
research

@ Near-Optimal Power Control in Wireless Networks

@ Distributed Dynamic Reinforcement of Efficient Outcome in
Multiagent Coordination and Network Formation

@ Designing Games to Handle Coupled Constraints

@ Game Theoretic learning algorithm for a spatial
Coverage Problem
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