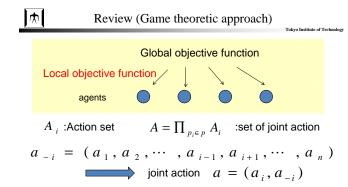


Application of Potential Game for Power Control in Wireless Networks and Network Formation

Tokyo Institute of Technology

Fujita Laboratory



Local objective function $U_i: A \rightarrow R$

- Control design
- 1. Designing the player objective function
 - Learning dynamics (repeated game) (ex)single stage memory dynamics

Tokyo Institute of Technology

 ψ

Review (Potential game)

Global planner

 $\phi:A\to\Re$

aligned

(potential function)

Make player's objective function U_i

$$U_{i}(a_{i}^{"}, a_{-i}) - U_{i}(a_{i}^{'}, a_{-i})$$

= $\phi(a_{i}^{"}, a_{-i}) - \phi(a_{i}^{'}, a_{-i})$

Changing in the player's objective function

Changing in the potential function

Every agent select an action to maximize their objective function

Tokyo Institute of Technology

か

Outline

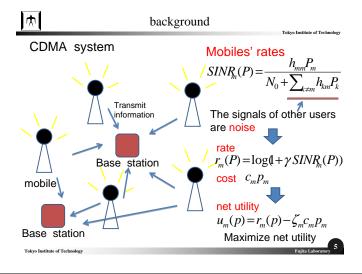
Near-Optimal Power Control in Wireless

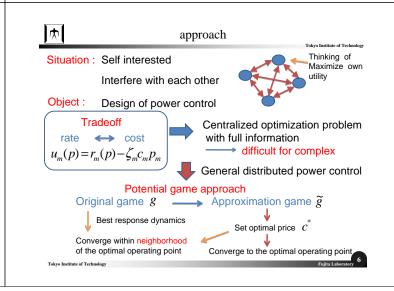
Networks: A Potential Game Approach

Utku Ozan Candogan, Ishai Menache, Asuman Ozdagiar and Pablo A. Partilo. Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge, MA, 02139

- Background
- Model
- Modified utilities
- Near optimal dynamics
- Convergence analysis
- Simulation Result

Fujita Laboratory 4



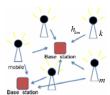


Outline

- · Background
- Model
- Modified utilities
- Near optimal dynamics
- Convergence analysis
- Simulation Result

か

model



mobiles $M = \{1, \dots, M\}$

$$\cdot\cdot,M$$
} $P=\{p_1,\cdot\cdot\cdot,p_M\}$

Power allocation

$$SINR_m(P) = \frac{h_{mm}P_m}{N_0 + \sum_{k \neq m} h_{km}P_k}$$

 \emph{h}_{km} :gain between user k and transmitter m's base station

$$r_m(P) = \log(1 + \gamma SINR_m(P))$$

 $cost c_m P_m$

 $u_m(p) = r_m(p) - \zeta_m c_m p_m$

 p_m : transmission power $0\!\leq\!p_{\min m}\!\leq\!p_m\!\leq\!\overline{p}_m$

User specific rate vs money Tradeoff coefficient

Objective function (net utility)

Power game (definition)

Power game $g = \langle M, \{u_m\}_{m \in M}, \{\underline{p}_m\}_{m \in M} \rangle$ m's objective function m's action set

Self interested $\max_{m} u_m(\widetilde{p}_m, p_{-m})$

Nash equilibrium (NE)

$$\begin{aligned} &u_{\scriptscriptstyle m}(p) \geq u_{\scriptscriptstyle m}(\widetilde{p}_{\scriptscriptstyle m},p_{\scriptscriptstyle -m}) & \forall \widetilde{p}_{\scriptscriptstyle m} \in p_{\scriptscriptstyle m}, \forall \, m \in M \\ &\varepsilon - \text{Nash equilibrium} \\ &u_{\scriptscriptstyle m}(p) \geq u_{\scriptscriptstyle m}(q_{\scriptscriptstyle m},p_{\scriptscriptstyle -m}) - \varepsilon & \forall \, q_{\scriptscriptstyle m} \in p_{\scriptscriptstyle m}, \forall \, m \in M \end{aligned}$$

Central planner wishes to impose some performance objective

$$(ex) \ U_0(p) = \sum_m r_m(p)$$
Sum rate objective

Optimal solution p^{*} (desired operating point)

Modified utilites

 $r_m(P) = \log(1 + \gamma SINR_m(P))$ modified Utility $\widetilde{u}_m(p) = \widetilde{r}_m(p) - \zeta_m c_m p_m$ $\widetilde{r}_m(P) = \log(\gamma SINR_m(P))$

Approximation is good Spreading gain $\gamma >> 1$ $h_{mm} >> h_{mk}$

Can make potential function $\phi(p) = \sum \log(p_m) - \zeta_m c_m p_m$

 $(\phi(p_m, p_{-m}) - \phi(q_m, p_{-m}) = \tilde{u}_m(p_m, p_{-m}) - \tilde{u}_m(q_m, p_{-m}))$ Strictly concave → unique NE

Potential game

$$\widetilde{g} = \langle M, \{\widetilde{u}_m\}_{m \in M}, \{p_m\}_{m \in M} \rangle$$

 ψ

Assigning prices

Assigning prices c^* to coincide with NE of \widetilde{g} and p^*

 $\widetilde{u}_m(p) = \widetilde{r}_m(p) - \zeta_m c_m p_m$

[Theorem]

Let p^* be the desired operating point .Then the prices c^* are given by

$$c_m^* = (\zeta_m p_m^*)^{-1} \qquad m \in M$$

(proof)

 $\phi(p)$ Strictly concave \rightarrow unique NE

 \rightarrow Maxima of $\phi(p)$ is NE $\frac{\partial \phi}{\partial p_m} = \frac{1}{p_m} - \frac{1}{p_m^*} \implies p = p^* \longrightarrow \frac{\partial \phi}{\partial p_m} = 0 \quad \left[c_m^* = \frac{\overline{m}}{(\zeta_m p_m^*)^{-1}} \right]$

p* Global maximum of the potential

本

Near optimal dynamics

 p^* is not NE of the game g with c^*

Converge neighbor of p*?

Best Response dynamics

$$p_{m} \leftarrow p_{m} + \alpha(\beta_{m}(p_{-m}) - p_{m})$$

$$\text{Best Response } \beta_{m}(p_{-m}) = \underset{p_{m} \in P_{m}}{\operatorname{arg max}} u_{m}(p_{m}, p_{-m})$$

$$\text{most good action for user m}$$

$$\dot{p}_{m} = \beta_{m}(p_{-m}) - p_{m}$$

 \widetilde{g} with $c=c^*$ Converge to p^*

(Lyapunov analysis)

How about g ?

Tokyo Institute of Technology

Outline

- · Background
- Model
- Modified utilities
- Near optimal dynamics
- Convergence analysis
- Simulation Result

Convergence analysis

Best Response of
$$\tilde{g}$$
 $\tilde{\beta}_m(p_{-m}) = \underset{p_m \in P_m}{\arg \max} \tilde{u}_m(p_m, p_{-m})$ $= \underset{p_m \in P_m}{\arg \max} \phi(p_m, p_{-m})$ (From PG)

$$\varepsilon$$
 -equilibria of \widetilde{g} $\widetilde{I}_{\varepsilon} = \{ p \mid \widetilde{u}_m(p_m, p_{-m}) \geq \widetilde{u}_m(q_m, p_{-m}) - \varepsilon \}$

[Lemma]

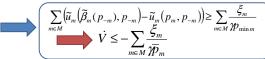
The BR in $\mathscr S$ converge to $\widetilde{I}_{\mathcal E}$ $SINR_{\min}(P) = \frac{h_{\min}P_{\min}}{N_0 + \sum_{l,m}h_{lm}P_{\max}} \quad \mathcal E \leq \frac{1}{\gamma} \sum_{m \in M} \frac{1}{SINR_{\min m}}$

(proof) $\overline{\phi}$: maximum value of ϕ

 $V = \overline{\phi} - \phi \ge 0$: Lyapunov function

$$\begin{split} -\dot{V} &= \sum_{m \in M} \frac{\partial \phi}{\partial p_m} \left(\widetilde{\beta}_m(p_{-m}) - p_m \right) + \sum_{m \in M} \frac{\partial \phi}{\partial p_m} \left(\beta_m(p_{-m}) - \widetilde{\beta}_m(p_{-m}) \right) \\ &= \sum_{m \in M} \frac{\partial \phi}{\partial p_m} \left(\widetilde{\beta}_m(p_{-m}) - p_m \right) \geq \widetilde{u}_m \left(\widetilde{\beta}_m(p_{-m}), p_{-m} \right) - \widetilde{u}_m(p_m, p_{-m}) \\ &= \frac{\partial \phi}{\partial p_m} \left(\beta_m(p_{-m}) - \widetilde{\beta}_m(p_{-m}) \right) \leq \left(\frac{1}{p_{\min m}} - \frac{1}{\overline{p}_m} \right) \frac{\xi_m}{\gamma} \\ &= \frac{N_0}{h_{mm}} + \sum_{k \neq m} \frac{h_{km}}{h_{mm}} \overline{p}_k \end{split}$$

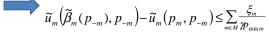
 $-\dot{V} \geq \sum_{\scriptscriptstyle m \in M} \Bigl(\widetilde{u}_{\scriptscriptstyle m} \Bigl(\widetilde{\beta}_{\scriptscriptstyle m} (p_{\scriptscriptstyle -m}), p_{\scriptscriptstyle -m} \Bigr) - \widetilde{u}_{\scriptscriptstyle m} \bigl(p_{\scriptscriptstyle m}, p_{\scriptscriptstyle -m} \bigr) \Bigr) - \sum_{\scriptscriptstyle m \in M} \Bigl(\frac{1}{p_{\scriptscriptstyle \min}} - \frac{1}{\overline{p}_{\scriptscriptstyle m}} \Bigr) \frac{\xi_{\scriptscriptstyle m}}{\gamma}$



$$\sum_{m \in M} \left(\widetilde{u}_m \left(\widetilde{\beta}_m(p_{-m}), p_{-m} \right) - \widetilde{u}_m(p_m, p_{-m}) \right) \ge \sum_{m \in M} \frac{\xi_m}{\mathcal{P}_{\min m}}$$

$$\dot{V} \le - \sum_{m \in M} \frac{\xi_m}{\mathcal{P}_m}$$

Converge to this set from Lyapunov method



$$\varepsilon \leq \frac{1}{\gamma} \sum_{m \in M} \frac{1}{SINR_{\min m}}$$

$$\begin{split} & \left(\widetilde{I}_{\varepsilon} = \{ p \mid \widetilde{u}_{m}(p_{m}, p_{-m}) \geq \widetilde{u}_{m}(q_{m}, p_{-m}) - \varepsilon \} \right) \\ & \circ \dot{V} \leq -\sum_{m \in M} \frac{\xi_{m}}{\overline{p}_{m}} \end{split}$$

|

How far?

How far the set of \mathcal{E} - equilibria of \widetilde{g} from p^* ?

[Theorem] $\left| \underbrace{\widetilde{p}_{\underline{m}}}_{\underline{f}} - \underbrace{p_{\underline{m}}^*}_{\underline{f}} \right| \leq \overline{P}_{\underline{m}} \sqrt{2\varepsilon} \qquad \widetilde{p} \in \widetilde{I}_{\varepsilon}$ $\varepsilon \text{ -equilibria of } \widetilde{g} \qquad \qquad Global \text{ maximum of the potential}$ $\widetilde{I}_{\varepsilon} = \{ p \mid \widetilde{u}_m(p_m, p_{-m}) \geq \widetilde{u}_m(q_m, p_{-m}) - \varepsilon \}$

 $(\widetilde{proof}) \phi(\widetilde{p}_{m}^{*}, \widetilde{p}_{-m}) - \phi(\widetilde{p}_{m}, \widetilde{p}_{-m}) \leq \varepsilon$ $\longrightarrow \left(\log(p_m^*) - \lambda_m p_m^*\right) - \left(\log(\widetilde{p}_m) - \lambda_m \widetilde{p}_m\right) \le \varepsilon \left(\phi(p) = \sum \log(p_m) - \zeta_m c_m^* p_m\right)$ $\left(f_{m} = \log(p_{m}) - \lambda_{m} p_{m}\right)$ $\longrightarrow f_m(p_m^*) - f_m(\widetilde{p}_m) \leq \varepsilon$

 $f_m = \log(p_m) - \lambda_m p_m$ $f_{m}(\widetilde{p}_{m}) = f_{m}(p_{m}^{*}) + (\widetilde{p}_{m} - p_{m}^{*}) \frac{\partial f_{m}(p_{m}^{*})}{\partial p_{m}} + \frac{1}{2}(p_{m}^{*} - \widetilde{p}_{m})^{2} \frac{\partial^{2} f_{m}(p_{m}^{*} + \alpha(\widetilde{p}_{m} - p_{m}^{*}))}{\partial p_{m}^{2}}$

 $p^{*} \text{ Is desired operating point}$ $\longrightarrow \frac{\partial f_{m}(p_{m}^{*})}{\partial p_{m}} = \frac{\partial \phi(p_{m}^{*})}{\partial p_{m}} = 0$ $\longrightarrow f_{m}(p_{m}^{*}) - f_{m}(\widetilde{p}_{m}) = \frac{1}{2}(p_{m}^{*} - \widetilde{p}_{m})^{2} \frac{1}{\left(p_{m}^{*} + \alpha(\widetilde{p}_{m} - p_{m}^{*})\right)^{2}}$

 $2(p_m^* + \alpha(\tilde{p}_m - p_m^*))^2 (f_m(p_m^*) - f_m(\tilde{p}_m)) = (p_m^* - \tilde{p}_m)^2$

 $\longrightarrow 2\varepsilon \overline{P}_{m}^{2} \geq (p_{m}^{*} - \widetilde{p}_{m})^{2} \qquad (f_{m}(p_{m}^{*}) - f_{m}(\widetilde{p}_{m}) \leq \varepsilon, 0 < p_{m}^{*}, \widetilde{p}_{m} \leq \overline{p}_{m})$

 $|\widetilde{p}_m - p_m^*| \leq \overline{P}_m \sqrt{2\varepsilon}$

Near optimal performance

Near optimal performance in terms of system utility

Performance loss decrease with small $\ arepsilon$

(ex)
$$U_0(p) = \sum_m r_m(p)$$

Theorem] Let $\varepsilon \leq \frac{1}{\gamma} \sum_{m \in M} \frac{1}{SINR_{\min m}}$ then

(1) $U_{\scriptscriptstyle 0}$ is Lipschitz continuous function ,with L . Then

$$\left|U_0(p^*) - U_0(\widetilde{p})\right| \le \sqrt{2\varepsilon} L \sqrt{\sum_{m \in M} \overline{P_m}^2}$$

(2) Assume that $\,U_{\scriptscriptstyle 0}\,\,$ is a continuous differentiable function such that

$$\left| \frac{\partial U_0}{\partial p_m} \right| \le L_m$$
 Then

$$|U_0(p^*) - U_0(\widetilde{p})| \le \sqrt{2\varepsilon} \sum_{m \in M} \overline{P}_m L_m$$

Difference between p^* and \tilde{p} \Longrightarrow Difference between

 $U_0(p^*)$ and $U_0(\widetilde{p})$

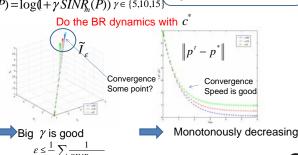
 $|\psi|$

Outline

- · Background
- Model
- Modified utilities
- Near optimal dynamics
- Convergence analysis
- Simulation Result

Simulation result

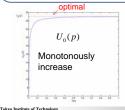
·Three users •desired operating point $p^* = [5,5,5]$ $N_{_0}=1 \quad h_{_{km}} \in [0,2] \quad h_{_{mm}} \in [2,4]$ $r_{in}(P) = \log(1 + \gamma SINR_{in}(P)) \gamma \in \{5,10,15\}$

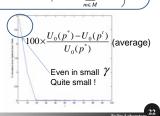


Simulation result (system utility)

Sum rate objective $\max_{p\in P}U_0(p)$ $U_0(p) = \sum_m r_m(p)$

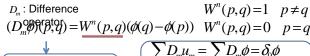
[Theorem] $\left| \left| U_0(p^*) - U_0(\widetilde{p}) \right| \le \sqrt{2\varepsilon} (M - 1) \sum_{m \in M} \frac{\overline{P}_m}{P_{\min m}}$ $\left| \left| \left| U_0(p^*) - U_0(\widetilde{p}) \right| \le \sqrt{2\varepsilon} \sum_{m \in M} \overline{P}_m L_m \right|$ U_0 is a continuous differentiable function

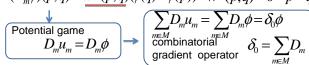




General type

Find the most close Find the most close potential function objective function of ϕ to u_m $\hat{u}^{m} = \underset{\overline{u}^{m}}{\operatorname{argmin}} u^{m}$





 $|\psi|$

Theorem of Projection

[Theorem] Optimal projection

$$\phi = \left(\sum_{m \in \mathcal{M}} \Pi_m\right)^{\dagger} \sum_{m \in \mathcal{M}} \Pi_m u^m$$

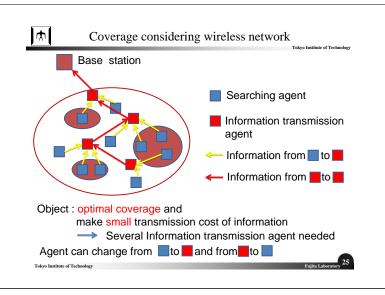
$$\hat{u}^m = (I - \Pi_m)u^m + \Pi_m \left(\sum_{k \in \mathcal{M}} \Pi_k\right)^{\dagger} \sum_{k \in \mathcal{M}} \Pi_k u_k. \quad \Pi_m = D_m^* D_m$$

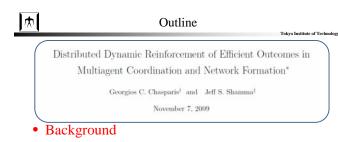
[Theorem]

Any equilibrium of $\widetilde{\mathcal{g}}$ is an $\mathcal{E}\mathrm{-equilibrium}$ of $\ \mathcal{g}$.

$$\varepsilon \leq \sqrt{2}d(g) \qquad d^{2}(g) = \min_{\phi \in C_{0}} \left\| \delta_{o}\phi - \sum_{m \in M} D_{m}u^{m} \right\|_{2}^{2}$$

 $\underline{\widetilde{g}}$: projection of the game g $u_m(p) \ge u_m(q_m, p_{-m}) - \varepsilon$



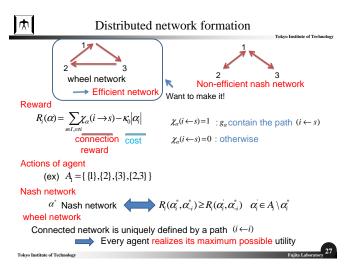


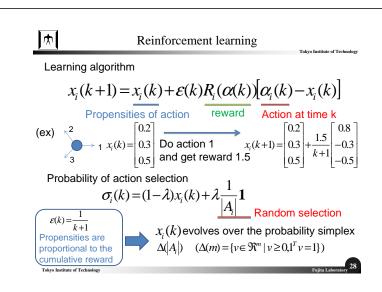
- · Reinforcement learning
- Asymptotic stability analysis
- Dynamic Reinforcement
- Asymptotic stability of RADR
- Simulation Result

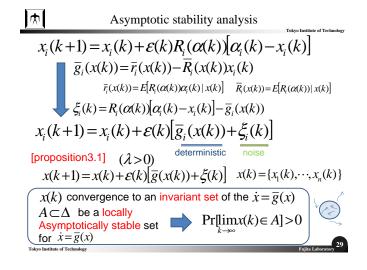
Tokyo Institute of Technology

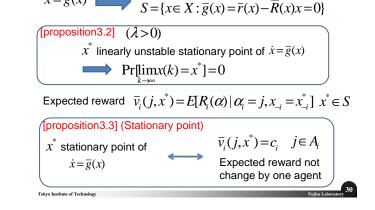
 $|\psi|$

 $\dot{x} = \overline{g}(x)$



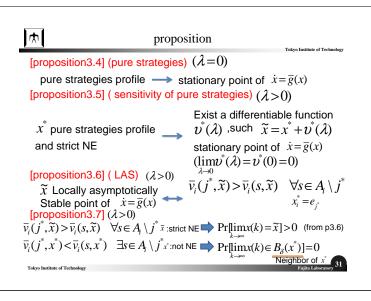






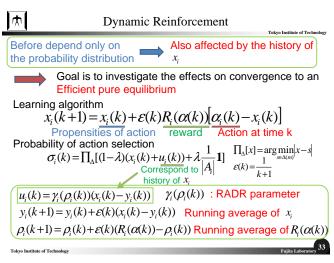
Asymptotic stability analysis

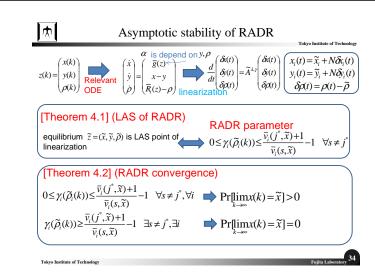
Stationary point

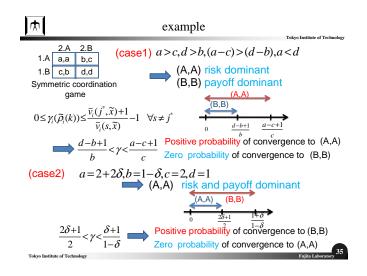


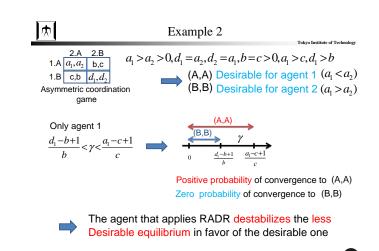
- · Background
- · Reinforcement learning
- · Asymptotic stability analysis
- Dynamic Reinforcement
- Asymptotic stability of RADR
- Simulation Result

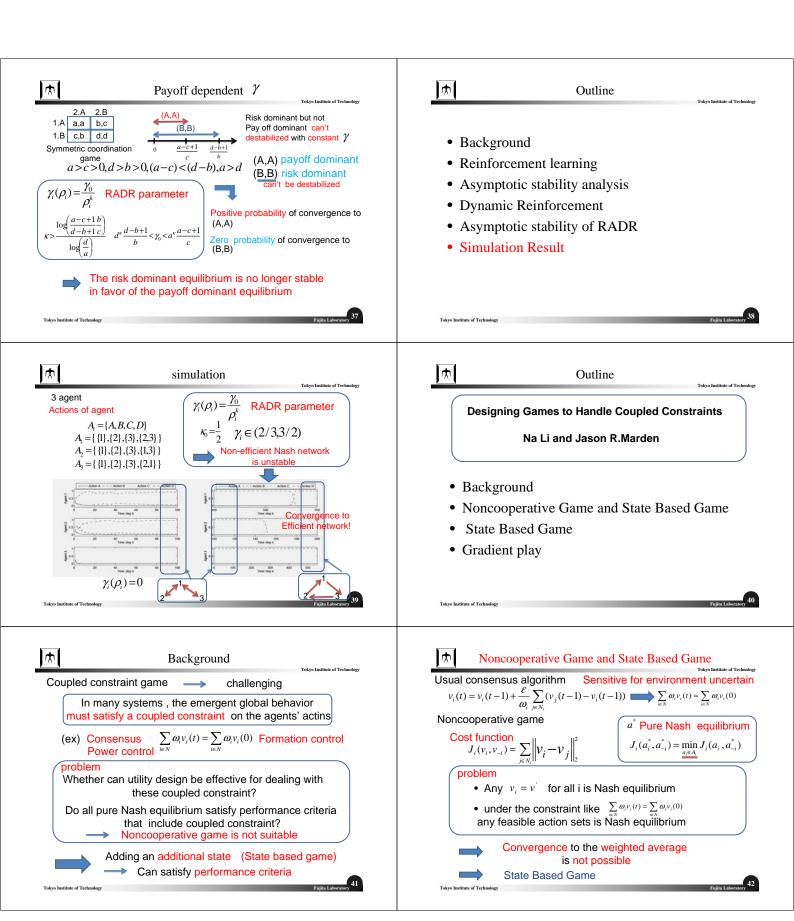
32 Fujita Laboratory

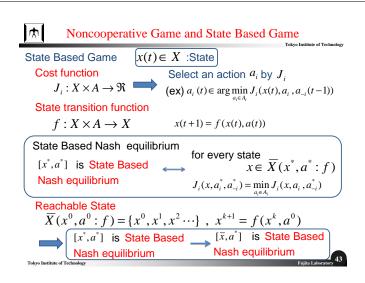


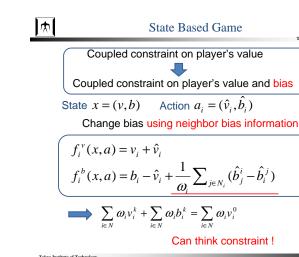


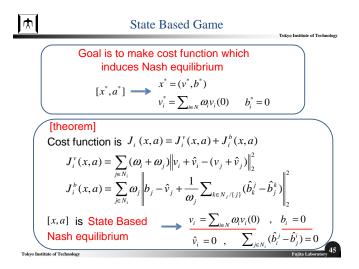


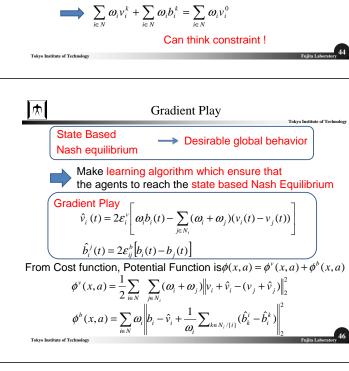




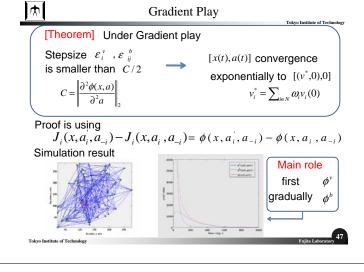








Tokyo Institute of Technolog



Outline

Game Theoretic learning algorithm for a spatial Coverage Problem

Ketan Savla, Emilio Frazzoli

Environment and Purpose

Potential Game

 ψ

Environment and Purpose

Environment

 φ : density function $\int_{Q} \varphi(q) dq = 1$ P(t): service requests generated in [0,t)

Spatio-temporal Poisson point process

Process generating service requests is

$$\begin{array}{ll} \Pr[\ \ card \ \ ((\ P\ (s+t)-P\ (s)) \ \cap \ S\) = k\] \\ = \frac{\exp(\ -\lambda\,t\,\varphi\,(s\,))(\ \lambda\,t\,\varphi\,(s\,))^{\ k}}{k\,!} & \mathcal{\lambda}: \text{temporal intensity} \end{array}$$

Expected number of targets generated in Δt , S $E[card ((P(t + \Delta t) - P(t)) \cap S)] = \lambda \Delta t \varphi(S)$

Service request is fulfilled when one of agent move to target position

Agent model $\dot{p}_i(t) = u_i(t)$, $||u_i(t)|| \le 1$

Environment and Purpose

· Agents stay most of time idle

 $\lambda \to 0^+$ \Longrightarrow • Go target position and come back reference point before next target emerge

Expected system time

$$E[T_j] = \int_Q \min \|p_i(t_j) - q\|\varphi(q)dq$$

System time under the policy $\,\pi\,$

$$\overline{T}_{\pi} = \lim_{i \to \infty} E[T_i]$$
 $\pi = {\pi_1, \dots, \pi_m}$

 $\overline{T_{\pi}} = \lim_{j \to \infty} E[T_j]$ $\pi = {\pi_1,, \pi_m}$ Expected time a service request must wait

Want to make policy which achieve optimal performance

$$\overline{T}_{opt} = \min_{\pi} \overline{T}_{\pi}$$
 with game theory

Usually use Voronoi centroidal low
$$p_i = \underset{s \in \mathfrak{R}^n}{\min} \int_{V_i(p)} \lVert s - q \rVert \varphi(q) dq \ \left(\overline{T}_{opt} = \underset{p \in \mathcal{Q}^n}{\min} \sum_{i=1}^m \int_{V_i(p)} \lVert p_i - q \rVert \varphi(q) dq \right)$$

Potential Game

- •Location of a resource is broadcast to all agent
- •No explicit communication between agent

 $r(q,\pi)$: agent i's reward

$$r_i(q, \pi) = \max\{0, \min_{j \neq i} ||\pi_j - q|| - ||\pi_i - q||\}$$

positive only i is most close to q

$$u_i(\pi_i, \pi_{-i}) = E_q[r_i(q, \pi)]$$

$$= \int_{Q} \max\{0, \min_{j \neq i} ||\pi_{j} - q|| - ||\pi_{i} - q||\} \varphi(q) dq$$

$$= \int_{V_i(\pi)} (\min_{j \neq i} \left\| \pi_j - q \right\| - \left\| \pi_i - q \right\|) \varphi(q) dq \text{ (from Voronoi cell)}$$

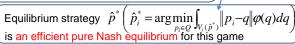
Potential Game

utility $u_i(\pi_i, \pi_i) = E_a[r_i(q, \pi)]$

$$= \sum_{j=1, j \neq i}^{m} \int_{V_{j}(\pi_{-i})} \|\pi_{j} - q\| \varphi(q) dq - \sum_{j=1}^{m} \int_{V_{j}(\pi)} \|\pi_{j} - q\| \varphi(q) dq$$

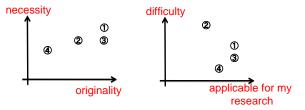
$$\psi(\pi) = -\sum_{i=1}^{m} \int_{V_i(\pi)} ||\pi_i - q|| \varphi(q) dq$$

Potential function $\psi(\pi) = -\sum_{i=1}^{m} \int_{V_i(\pi)} \left\| \pi_i - q \right\| \varphi(q) dq$ = Equal to global objective function $u_x(\pi) = -\overline{T}_x = -\sum_{i=1}^{m} \int_{V_i(\pi)} \left\| \pi_i - q \right\| \varphi(q) dq$ From Voronoi Centoroidal low



Use learning algorithm to go to an efficient pure Nash equilibrium

summary



- 1 Near-Optimal Power Control in Wireless Networks
- 2 Distributed Dynamic Reinforcement of Efficient Outcome in Multiagent Coordination and Network Formation
- 3 Designing Games to Handle Coupled Constraints
- Game Theoretic learning algorithm for a spatial Coverage Problem

