

1

Conclusion / Future Works

Conclusion

- · Modification of the visual observer-based control system
- Proposal of modified control laws
- Convergence analysis
- Simulation / experiment

Future Works

- Master thesis
- Visibility maintenance (formation control)

テ

okyo Institute of Tech

References

[6] M. Fujita, H. Kawai and M. W. Spong, "Passivity-based Dynamic Visual Feedback Control for Three Dimensional Target Tracking:Stability and L2-gain Performance Analysis", IEEE Trans. on Control Systems Technology, vol. 15, no. 1, 40/52, 2007.

[7] 村尾、河合、藤田、"受動性に基づく視覚フィードバックにおける推定と制御の内部構造、"第36回制御理論シンポジウム予稿集, pp. 183--186, 2007.

A

References

 Y. Igarashi, T. Hatanaka and M. Fujita, "Passivity-based Pose Synchronization and Flocking in Three Dimensions," IEEE Trans. on Automatic Control, 2008(under review).

[2] R. Vidal, O. Shakernia and S. Sastry, "Following the Flock:Distributed Formation Control with Omnidirectional Vision-Based Motion Segmentation and Visual Servoing," IEEE Robotics and Automation Magazine, Vol. 11, No. 4, pp12--20, 2004.

[3] A. K. Das, R. Fierro, R. V. Kumar, J. P. Ostrowsi, J. Spletzer and C. J. Taylor, "A Vision-Based Formation Control Framework," IEEE Trans. on Robotics and Automation, Vol. 18, No. 5, pp. 813--825, 2002.

[4] F. Morbidi, G. L. Mariottini and D. Prattichizzo, "Vision-based range estimation via Immersion and Invariance for robot formation control," Proc. of IEEE International Conference on Robotics and Automation, pp. 504--509, 2008.

[5] N. Moshtagh, N. Michael, A. Jadbabaie and K. Daniilidis, "Vision-Based, Distributed Control Laws for Motion Coordination of Nonholonomic Robots," IEEE Trans. on Robotics, 2008(accepted).

☆

Tokyo Institute of Techno

Appendix

Comparison between my study and [5]

	my study	[5]
kinematics	$egin{cases} \dot{p}^w_{wi} &= e^{\hat{\xi} heta_{wi}}v^i_{wi}\ \dot{e}^{\hat{\xi} heta_{wi}} &= e^{\hat{\xi} heta_{wi}}\hat{\omega}^i_{wi} \end{cases}$	$egin{aligned} \dot{x}_i &= \cos heta_i \ \dot{y}_i &= \sin heta_i \ \dot{ heta}_i &= \omega_i \end{aligned}$
original control law	$\begin{split} V_{\text{set}}^{i} &= K_{i} \sum_{j \in \mathcal{N}_{i}} \left(w_{ij} \begin{bmatrix} e^{-\frac{i}{2} \theta_{\text{set}}} & \emptyset \end{bmatrix} \begin{bmatrix} \theta_{ij}^{w} - \theta_{ij}^{w} \\ \theta_{ij} \end{bmatrix} \right) \\ &+ \begin{bmatrix} e^{-\frac{i}{2} \theta_{\text{set}}} & 0 \\ 0 & e^{-\frac{i}{2} \theta_{\text{set}}} \end{bmatrix} \begin{bmatrix} e^{\frac{i}{2} \theta_{\text{set}}} e^{\frac{i}{2} \theta_{\text{set}}} \\ e^{\frac{i}{2} \theta_{\text{set}}} e^{\frac{i}{2} \theta_{\text{set}}} \end{bmatrix} \end{split}$	$\label{eq:constraint} \begin{split} \omega_i &= \kappa \sum_{j \in \mathcal{N}_i} \sin(\theta_i - \theta_j) \\ & \kappa < 0 \end{split}$
	 position and attitude 3D space	 attitude only planer space
necessary values for vision-based controller	• pixels of 4 feature point	• bearing angle, optical flow and time-to-collision (which can be gotten by image processing)
Tokyo Institute of Technology Fujita Laboratory		

Appendix ■ Comparison between my study and [5] my study [5] vision- $-\kappa \sum_{j \in \mathcal{N}_i} \left(\frac{1}{\tau_{ij}} \sin \beta_{ij} + \dot{\beta}_{ij} \cos \beta_{ij}\right)$ $\begin{bmatrix} (1-\frac{d}{||p_{qij}^i||})p_{qij}^i\\ \mathrm{sk}(e^{\hat{\xi}\theta_{qij}})^{\vee} \end{bmatrix}$ $\omega v =$ $K_i \sum_{j \in \mathcal{N}_i} w_{ij}$ based $1 + \kappa \sum_{j \in \mathcal{N}_i} \cos \beta_{ij}$ control law $\kappa < 0$ •we don't have to consider vision based part when we consider · using exactly measurable values cooperative control part when equals to original control law estimation error is sufficiently •attitude only small planer space · position and attitude • 3D space · (estimated) quasi-relative pose values can be used to many application (collision avoidance, coverage, etc.) of Tech

boratory 39