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Background of Distributed Control Distributed Control
B Background of Distributed Control B Distributed Control
In the 1970s Spatio-Temporally distributed collecting and processing
Mounting expectation and demand for control of information(Information Structure?)- 3))
methodology for Large Scale Systems s
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Past Researches of Distributed Control Objective
B Past Researches B Objective
From 1970s We propose Distributed Predictive Control Laws
Stability?o)’ 21) Optimalityl) and Robustness for Linear Discrete Time Stochastic System with
Mean and Covariance Constraints.
In recent years

Involving recent control theory ) 5)

Note: Mean and Covariance Constraints represent State and
Considering system structure269))a 7). 8), 12), 23), 28),

Input Constraints, Power Constraint and Communication

Delay Structure.
-

We focus on Covariance (goqatraints@ 7:12) and %
Decomposition Approach ) 14), | |
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Problem Statement
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H Problem 1 .
mm Tr PV _(x(N))+ ZTr OV (x(k),u(k))

¥

te Z,, x()e R"
u)e R", wit)e R"™
subject to x(k + 1) = Ax(k) + Bu(k) + Fw(k)

Tr 9,V (x(k),u(k)) < 7, Covariance Constraints

k
E [x( )} e DcR™™ Mean Constraints
u(k)

Tr QV (x(N), 1y, (x(N))) + Tr PV, (x(N +1)) S Tr PV, (x(N))

x(N) e 0, for Feasibility for Stability
EREGIEGH o r
Y (x(k), u(k)) = E[u(k)][u(k)} LV (x(k)) = Ex(b)x" (k), 0> 0

Q, : symmetric matrix, r = 1,2,...,m

state trajectos
predicted state trajectory O.. : maximal output admissible set
(updated) i A= 1

np uence V =

L (updated) H
EEy

state trajectory

Predicted state trajectory
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Example 1
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B Example 1
2@+D] [2, 20 0Tz0] [Yu 0 0Tu®] [@ 0 0w
L+D) =8y By En|z@]+] 0 Yy, 0 ju,()|+] 0 Q, 0 |w@®)
5 +1) 0 Ey, Eu]z0 0 0 Yyfu® 0 0 Q| wy(0)
z(t+1) = z(t) Y u(t) Q w(t)
5,(@®) = (z,(t), z,(t = 1), (1 = 2))
L(1) = (z,(t =), z,(0), z,(t = 1) Zp U ZyUy Z3, Uy

: information that  th member can obtain
L) = (z(t=2), z,(t =), Z3(t))w disturbance of I th member

< | Communication Delay is reduced to Delay of Disturbance. |
L) = (2(t = 2), m(t =1, w({t = 2), wy(t - 2))
]z(t) = (Z(t - 2)3 wl(t - 2)7 W2(t - 1): W2(t - 2)3 W3(t - 2))

L(0) = (2(2 = 2), wy(t = 2), wy(z = 1), wi(z —2)) )

Mean and Covariance Constraints
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B Communication Delay H Power Constraint

Eu@Owm(-)=0 E 2" (00.2(0) + u’ ()0u() < ¥
E u,(w(t -1) = o Expectation

E u,()w,(t —2) = 0 Note: An Extended State

E u,()w,(—-1)=0 Realization
u,Ow,(t =1 =0 200 Y Q
Eu3(l‘)w](t—1):0 A=|0 0 0,B=|0|, F=|1
07 0 0 0

E u,()wm(t-2)=0

_ z(t)
E uy(t)w,(t —1) = 0 U i
B State and Input Constraints w(t —2)

E {Z(I)} e D cR"™
u(t)
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Stability and Optimal Solution

B Lemma 1(Stability)
If the following conditions are satisfied,
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Tr QV (x(N), 1 (x(N))) + Tr PV (x(N +1)) < Tr PV, (x(N)

x(N)e O,

then
lim ¥ (x(),u(®)) = 0

B Lemma 2(Optimal Solution)

Problem 1 is reduced to a Convex Optimization Problem
involving an LMI.

Numerical Simulation
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B Simulation Setting

1) 150z, = (2, = 1,))" H50((z, = 1,) = 2)" +

1
min > E 150(z, - 7,,
“k=o
ol +ul +ul

subject to

1
S E 150(z, - 1,,))* +150(z, — (z, -

k=0
5. 1.5
Euw, =0, %, ‘z

1
Eu|<1,i=123 05t
7 (t) = sin(2m /120) i

et N 0¥

@)) +150((z, - /g‘)—z3) +u1 +uZ +u3 <1
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H Example 2
L Y T
! ! 1 I
: | 1 I
1 I
1 Zply oy Zply | Zp Uy

Subsystem 1 Subsystem 2

We assume that N = 2 and we decompose only Inputs for
simplicity.

Input Sequence:
UO) =) w© w© w® wh wOf

/// N
/%2 \\42
U0 =k© 20 wo LoOf v.o =k wo Lo wof
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Lagrange Multipliers
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We use Lagrange Multipliers.

VO =[O u® w0 u® ud wOf

— N
/ - )
P N
0,0 =k ©O w0 WOl V.0 =k wo Lo wof

Note:
Aa((0) = 13(0)) = 0, A, (u,() — 3 (1)) = 0
A, 20, 4,20

Decomposition and Coordination
I
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B Lemma 3(Decomposition and Coordination)
Problem 1 is solved by computing Partial Optimization
Problems of each subsystem and updating Lagrange Mul-
tipliers(by Gradient Method) .

Note: Lemma 3 shows that Problem 1 is solved by Distribu-
ted Information and Distributed Computing.

Outline

Tokyo Institute of Technology

Introduction

State Feedback Control Law
Decomposition and Coordination
Output Feedback Control Law
Conclusions and Future Works

A

Problem Statement

H Problem 2

minTr PV, (x(N) + ZTr OV (x(k).u(k)
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subject to x(k + 1) = Ax(k) + Bu(k) + Fw(k)
(k) = Cx(k) + Gv(k)
Y(k) = (y(0), y(1),..., y(k))
u(k) = 4, (Y(k))
Tr 9,V (x(k),u(k)) < 7, Covariance Constraints

k
E ["( )} e DcR™™ Mean Constraints
u(k)

te Z,, x()e R™
u)e R™, wi)e R™, vit)e R"

Tr QV (x(N), 1y (x(N))) + Tr PV (X(N +1)) € Tr BV, (x(N)

o e

x(N) e O, for Feasibility for Stability




Lemma 4

B Lemma 4(Optimal Solution)
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Problem 2 is reduced to Problem 3.

B Problem 3

1:’:1!‘1 Tr PV _(X(N)) + gTr oV (x(k),u(k))

e

subject to (k + 1) = AZ(k) + Bu(k) + FK(k)(y(k) — Ci(k))
(k) = ((0), Z(1),..., #(K))
u(k) = 1, (Z(k))

Tr OV (0, utk) < 7 Covariance Constraints
R O]
£ [u(k)}e D<eR"*™  Mean Constraints
Tr OV (#(N), 3 (B(N)) + Tr PV, (R(N +1)) < Tr BV, (R(N))
#N) e 0. for Feasibility

for Stability n

Kalman Gain
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B Conclusions

We have proposed Distributed Predictive Control
Laws.

B Future Works
Considering extended Distributed Filtering
Extensions to Non-linear and Infinite Dimensional
Systems
Precise evaluation of Time Complexity and Fault
Tolerance
Considering Spatially Inhomogeneous Disturbance
and Optimal Decomposition
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