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Introduction

Cooperative Control
A distributed control strategy that achieves
specified tasks in multi-agent system
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Fig. 1 School of Fishes(3%)

Motivation
* Analysis of emergent and self-organized swarming behaviors in biological groups
with distributed agent-to-agent interaction
*Interest in a group behavior of animals, formulation control of multi-vehicle systems
and so on

Application

Mobile sensor networks, Robot networks, and many other Multi-agent systems

3% http://www.allposters.co.jp/-sp/-Posters_i1006775_.htm
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Preliminary
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* Graph : A set of connections (Edges) of between Objects (Vertice)
Vertex (node) : Agent Edge : Information Flow
-Directed Graph (Fig. 2) : the information flows from agent j to i
-Undirected Graph (Fig. 3) : the information flows to both directions

L] i i l
Directed Graph Fig. 2 Directed Graph
-strongly connected (Fig. 4) : O O

there is a directly path connecting any two distinct nodes i i
-weakly connected (Fig. 2) : Fig. 3 Undirected Graph
there is a path connecting any two distinct nodes ignoring the direction

¢ Undirected Graph
-connected :
there is a path between any two distinct nodes i K

Fig. 4 Strongly Connected Graph
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Preliminary

G=(V,E) :digraph

\Y :{Vl,..., Vn} : set of nodes (agents)

E <V xV :setof edges (an edge of G :&; = (v;,V;) )
N; ={v; eV :(v;,V;) € E} : set of neighbors of node V;
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. ) 1 i veN,
« Adjacency Matrix : A=[a;]= {0 O'the:"l’v; i
) a, if i=]
« Degree Matrix : D =[d;]= {.Z '
0 if %]

 Graph Laplacian : L = [|ij] =D-A
—> | L1=0, 1= - 1]
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Omnidirectional Wheel Robot
Tokyo Institute of Technology

Kinematic Model s Al

] [cos@ —sing 0] v, @\‘9

Yi|=|sing cosg 0fv, © Yo oz X

. Y =< 6, ‘
6, 0 0 1o @, @ 4

X, Y; € SR : position i

>

k
6, R rotation angle 2 X
. i Fig. 5 Rigid Body Motion (Omni)
Vi, Vy; € R0 body velocity

w, € SR : body angular velocity

ZW . inertial coordinate frame
Control Input :Vy,V,;, o,

xit Vyir ™

Zi . body-fixed coordinate frame
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Attitude Coordination
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Goal Attitude Coordination

A group of agents is said to Attitude Coordination, when all agents
converge to the same orientation between the agents. Namely,

lim(6,-6,)=0 Vi, ]

t—>0

N, ﬁﬂ @7 |:> ) o

Fig. 6 Attitude Coordination (Omni)
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Fujita Laboratory

Assumptions

Assumptions (A)
AlL: |g) <% vi
A2 : Information graph is fixed, strongly connected and balanced
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Balanced : A
the total number of edges entering a node and leaving (4} ©)
the same node are equal for all nodes (Fig. 5) v
Fig. 7 Balanced Graph
Lemma
. . Ex. 1 0 0 -1
If a graph is unweighted and balanced, ) 12 0 a1
L=
1"L=0, 1T=[1 1] 0 -1 1 0
0 -1 -1 2
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Proof of Lemma
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Proof of Lemma

Let deg;,(v;) represents the number of edges entering node i and
deg,, (v;) the number of edge leaving the same node.

Note that |, equals deg,,(v;) and Zl,-i equals deg,, (v,) .
Jog#
From the definition of L, if the graph is balanced, we have
lei = Z(Iji +1; ): —deg;, (v;) +deg,, (v;) =0.
1

Joj#
Therefore, as the i column sum of L is the same as the ith element
of the row vector 17 L, one concludes that 17 L = 0 if the graph
is balanced. .

Control Input and Theorem 1
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— Control Input
o=y sin@,-6) (2

jeN;

— Theorem 1

Consider the system with n rigid bodies represented by (1).
Under the assumptions (A), the control input (2) achieves attitude
coordination. Namely,

lim(g-6,)=0 Vi, j

tow
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Proof of Theorem 1
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Proof
Define the potential function as following

% ::Zn:(l—cosei).

The derivative of this potential function along trajectories of the
system (1) is given
V= Zn:sin 0,-6,
i=1

:i > sing;sin(g,-6)

i=1 jeN,

= Zn: >sing, (sin 6; cos 6, —cos 6, sin 0)

[EE

Zn: Z(— c0s6, +cos6, cos(6, - 6,))
i=1

JeN;
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Proof of Theorem 1
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((t—cos8,)-(1-cosg,)—cosé, +cos b, cos(g, - 6,))

jeN;

Zcos@(l cos(& 0)) (- (¥)

[N >0

<0 ('-'\QV?W) @

<
M:

n

. 1-cosé,
(*) D3 ((-coss,)-2- cosy))f_{ : }
N 1-cos0,
=0 (. lemmal)

Therefore, V is negative semidefinite.

C—> Use LaSalle's Invariance Principle
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Proof of Theorem 1
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Define the set S ::{ei e, villg) <%,v' :o}
From (A1) and (3),
V=0=6=0,(ji)cE
Because of the strong connectivity of the graph,
s ={.9i eR,villg|<Z,6,=6, Vi, j}
2 —
In addition,

6,=6,vi,j=> o =0,Vi
This implies that the set S is an invariant set.

:> Attitude coordination is achieved. [l
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Pose Synchronization
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r Goal Pose Synchronization

A group of agents is said to pose synchronize when all agents
converge to the same position and orientation between the agents.

Namely, lim (4 -y;)=0
lim(s—y,)=0 ¥
im(0-0)-0

A
471 i ,\\

B o &
&

Fig. 8 Pose Synchronization (Omni)
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Control Input and Theorem 2
~ Control Input
Vi cosg,  sing 0| X;—X%
Vg |=D|-sing, cosd, 0| y;-v, (4)
o 0 1]sin(,-6)
— Theorem 2

Consider the system with n rigid bodies represented by (1).
Under the assumptions (A), the control input (4) achieves pose
synchronization. Namely,

lim (x,—y,)=0
Ilm(yI y) 0 Vi, j
||m(e 0,)=0
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Proof of Theorem 2
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Proof
For the convenience of notation, let P; = [Xi yi]T‘
Define the potential function as following

v sz,H 1cos6’j

The derivative of this potential function along trajectories of the
system (1) is given
V= (bl p,+sin6,-4)

i=1

_Iz::;(pf(p,- —p,)+singsin(6, -4))

n

:zz[—%upiuz+%Hij2—%Hpi - ijz—cosHj +c0s6, cos(aj —Hi)j

i=1 jeN;
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Proof of Theorem 2
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V=33 3ln-p[ -cosali-cosly -a)] ()
i=L jeN, >0 >0 0
<0 [-.-\ai\<% vi] )

1
EH p +(@-cos6,)

(**) Zn:Z[%HP,HZ—%HP,HZ+(l—cOSt9])—(1—cosHI)J:—u_

i1 jeN,

L :
EH anz +(L-cosé,)

=0_ (- lemmal)

Therefore, V is negative semidefinite.

C—> Use LaSalle's Invariance Principle
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Proof of Theorem 2
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Define the set §::{(xi, y,,0,)e R Vi |\9i\<%,\/ :0}
From (A1) and (5),
V=0=x=X,y,=Y,,6=0,(ji)ecE
Because of the strong connectivity of the graph,
§={(Xi’yi'9i)emSYVi ”Hi‘ <%’Xi =X, ¥ =Y;,6,=0,,Vi, J}
In addition,
X =X,¥,=Y,6,=06,,Vi,j=v, =0,v, =0,0,=0,Vi
This implies that the set S is an invariant set.

:> Pose Synchronization is achieved. [l
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Expansion of Pose Synchronization
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Goal Desired Group Behavior
Specifying the desired group behavior after pose synchronization
is achieved

s 7 @>> N - i
@ﬂ a —> &
&

Fig. 9 Pose Synchronization with Desired Behavior

C—> Modify the body velocity input (4)
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Control Input
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~ Control Input

Vy cosd sing, 0| v,
Vi |=|-sing, cosé 0}v,
, 0 0 1| o,

cosg,  sing, 0| Xx;-X%
+Y |-sing, cosd O vy -V, (6)
N 0 1]sin(6,-4)

V. ,V. €R : desired velocity

ox? Yoy

o, = 9'c e R : desired angular velocity
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Theorem 3
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Theorem 3

Consider the system with n rigid bodies represented by (1) and
supposed that Vey: Vey and @ represent desired group trajectories.
Under the assumptions that |6,-6,/<Z vi and the
interconnection graph is fixed, strongfy connected and balanced,
the control input (6) achieves pose synchronization and desired
group behavior after the synchronization.

Proof
Omit. (Please refer the resume.)
Proof uses the potential function following

Y ::Zn:[%uﬁiuz +(1—cosé7i)j, P =n —J';vcdt, 6,=6,-6,.
i=1 _ -
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Two-wheel Robot

Tokyo Institute of Technology

Kinematic Model X,
X; cosd, 0 v - '
g -sma oM @) R
6| o 1™ Y \
L X,
;RO

X, Y; €R 1 position
. : z X
6, € R rotation angle w
B Fig. 10 Rigid Body Motion (Two-wheel)
v; e R velocity
@, € R angular velocity
ZW . inertial coordinate frame

Control Input: V;, @,

Zi . body-fixed coordinate frame
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Attitude Coordination
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Corollary

Consider the system with n rigid bodies represented by (7).
Under the assumptions (A), the control input (2) achieves attitude
coordination. Namely,

lim(g-6,)=0 Vi, ]

tow

-7

N

~ €'»..;'i| ﬁ\\ ;l;

N
Fig. 11 Attitude Coordination (Two-wheel)
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Pose Synchronization
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r Goal Pose Synchronization
The goal is to achieve pose synchronization of two-wheel robots
represented by model (7). Namely, A

!Lrg (xi - xJ): 0 "?\ < pi. ,’ﬂ rﬁ\“\ 7
!LT(yi_yJ)ZO Vi, | '1'7 '1‘4 :> -

lim (HI - 91 )= 0 Fig. 12 Pose Synchronization (Two-wheel)
tow

This problem is very difficult, because model (7) has
the constraint as following

| %sing —y,cosé, =0

Henceforth, introduce my research progression.

Approach
Tokyo Institute of Technology

Control of two-wheel robots’ positions and attitudes : Astolfi [6]

Using this methods, we can control them toward desired ones.

Control Input

{vi =k, p; ®) (_%WES%)

a)i = kaai + k¢¢l

.-
kK, k, : gain D (x,v.0)
Di (x Y diﬂdi) . agent i’s target states Fig. 13 Robot Kinematics (Two-wheel)

This system has the unique equilibrium point (o, 2;,¢) = (0,0, 0).
In my approach, use this system’s target states.
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Approach
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~ One Approach
Control Input (4) ©==> Target Position and

(A) égllctﬂfiaete input (4) from neighbors’ states.

(B) Suppose that the two wheel robot moves freely with control
input (4) for a constant time, then determine the target position
and attitude after the constant time.

(C) Calculate p,,e;, ¢, and take control input (8).

A) ®) '_L © ,i1

[ SR 7

o, [(Vq,Vy) target position and attitude L7 trajectory
/

Fig. 14 One approach
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Previous Work

A. Kwok and S. Martinez [8] (ACC, 2008.)
“Coverage Control with Unicycles via Hybrid Modeling”

« Use Astolfi’s approach for control unicycles’ positions

* Use hybrid system (many hybrid automata, flow state, jump state)
» Use ‘“Hybrid LaSalle’s Invariance Principle’ for analysis

« Consider only agents’ positions

« Astolfi’s approach makes ¢ -neighborhood of the target point

Tokyo Institute of Technology

Flow State — - Jump State

« Forward motion mode « Switching direction of travel
* Rotation mode * Forward motion to rotation
« Resting mode * Rotation to forward motion

« Forward motion or rotation to resting
* resting to forward motion

Tokyo Institute of Technology _HM

Research Progression
Tokyo Institute of Technology
Control Input (4)
Vi cos6, sing 0| x;-x
vy |= Y |-sing, cosd O -y,
o] "™ o 0 1fsin(o,-6,)

- Fig. 15 Looks of analysis
Target position and attitude body-fixed coordinate frame(after 1 [s])

St-n) Soon| ]

Xgi cos¢, sing, 0 l;‘(x] -x) Pi . 7si:9,§ (XA =X ‘)Ei‘cos 6. ‘ZN: (v, - v.)
yﬂ}{sine cos g, 0} Sy-v) [ s = cosH,Z{x,—x‘)+sin6,2(‘yj—y‘)
6, 0 0 1 & ¢ ‘ i,

s sinte,-6)
Control Input (8)

v. =k p | challenge to synchronize only positions first.
E> e I’m considering and calculating an appropriate
@, =K, +¥4 | potential function- - -(in progress).
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Experiment Environment
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Image

Camera(Get Image)

PC(CaIcuIaiir;n)

Input
Input(Wireless) Jy (Serial)

Two-wheel Robots(Agents)

Wiport(Wireless COMM)

Fig. 16 Experiment environment
Tokyo Institute of Technology

Experiment

For collision avoidance, set up the virtual
positions and synchronize them.

Gains: k,=0.05k, =0.4,k, =-0.075
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Fujita Laboratory

Experimental Result
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o] il e |

3 L5 3
- - F P
! 4 4

0 0% 1 15 ] 0 10 20 £l 40
time [s]
Fig. 19 Time Responses of x-coordinates

¥ [m]

¥

h 10 20 0 a0 0 5
time [s]

Fig. 20 Time Responses of y-coordinates

Fig. 21 Time Responses of Orientations
Tokyo Instiut of Technology _ﬂm

10 15 20 25 30
time [5]
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Conclusion and Future Works
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Conclusion

 Achieve pose synchronization of omnidirectional wheel robots
* Achieve attitude coordination of two-wheel robots
¢ Show the experiment of pose synchronization of two-wheel robots

Future Works

< Analyze pose synchronization of two-wheel robots
e Accomplish graduation thesis
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