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Introduction

Cooperative Control
A distributed control strategy that achieves 
specified tasks  in multi-agent system

Motivation
・Analysis of emergent and self-organized swarming behaviors in biological groups 

with distributed agent-to-agent interaction
・Interest in a group behavior of animals, formulation control of multi-vehicle systems 

and so on

Application
Mobile sensor networks, Robot networks, and many other Multi-agent systems

※　http://www.allposters.co.jp/-sp/-Posters_i1006775_.htm
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Fig. 1 School of Fishes(※)
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Preliminary

• Graph : A set of connections (Edges) of between Objects (Vertice)
Vertex (node) : Agent Edge : Information Flow

‐Directed Graph (Fig. 2) : the information flows from agent j  to i
‐Undirected Graph (Fig. 3) : the information flows to both directions

• Directed Graph
‐strongly connected (Fig. 4) :
　 there is a directly path connecting any two distinct nodes
‐weakly connected (Fig. 2) :
　 there is a path connecting any two distinct nodes ignoring the direction

• Undirected Graph
‐connected :

there is a path between any two distinct nodes
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Fig. 2 Directed Graph

Fig. 3 Undirected Graph

Fig. 4 Strongly Connected Graph
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Preliminary
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},...,{ 1 nvvV =
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}),(:{ EvvVvN ijji ∈∈= : set of neighbors of node iv
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Omnidirectional Wheel Robot
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Kinematic Model
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ℜ∈ii yx , :  position 

ℜ∈yixi vv , :  body velocity 

ℜ∈iθ :  rotation angle

ℜ∈iω :  body angular velocity

Control Input : iyixi vv ω,,
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jθ
jXjY

jΣ
i

iθ

iX
iY iΣ

k

kθ

kX

kY

kΣ
X

Y

wΣ

wΣ

iΣ

:  inertial coordinate frame 

:  body-fixed coordinate frame

Fig. 5 Rigid Body Motion (Omni)
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Attitude Coordination

8

A group of agents is said to Attitude Coordination, when all agents
converge to the same orientation between the agents. Namely, 

( ) jijit
,0lim ∀=−

∞→
　　　 θθ

Goal   Attitude Coordination

Fig. 6 Attitude Coordination (Omni)
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Assumptions
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Balanced : 
the total number of edges entering a node and leaving

the same node are equal for all nodes (Fig. 5)      

A1 : 
A2 :  Information graph is fixed, strongly connected and balanced

ii ∀< 　
2
πθ

Assumptions (A)

Fig. 7 Balanced Graph
Lemma
If a graph is unweighted and balanced, 
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Proof of Lemma
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Proof of Lemma

Note that      equals                and           equals       .

From the definition of L, if the graph is balanced, we have
iil

( ) .0)(deg)(deg
,
∑∑

≠

=+−=+=
ijj

ioutiiniiji
j

ji vvlll

Let                represents the number of edges entering node i and
the number of edge leaving the same node. 

)(deg iin v
)(deg iout v

)(deg iin v ∑
≠ijj

jil
,

)(deg iout v

Therefore, as the i column sum of L is the same as the ith element 
of the row vector         , one concludes that                if the graph 
is balanced. 

LT1 0=LT1
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Control Input and Theorem 1
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Consider  the system with n rigid bodies represented by (1). 
Under the assumptions (A), the control input (2) achieves attitude 
coordination. Namely, 

Theorem 1

Control Input
)2()sin( 　　　∑

∈

−=
iNj

iji θθω

( ) jijit
,0lim ∀=−

∞→
　　　 θθ
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Proof of Theorem 1
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Proof
Define the potential function as following

The derivative of this potential function along trajectories of the 
system (1) is given
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Proof of Theorem 1
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Therefore,      is negative semidefinite.V

Use LaSalle's Invariance Principle
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Proof of Theorem 1
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Define the set
⎭
⎬
⎫

⎩
⎨
⎧ =<∀ℜ∈= 0,

2
|,: ViS ii

&πθθ

From (A1) and (3),

EijV ji ∈=⇒= ),(,0 θθ&

Because of the strong connectivity of the graph,

⎭
⎬
⎫

⎩
⎨
⎧ ∀=<∀ℜ∈= jiiS jiii ,,,

2
|, θθπθθ

In addition,

iji iji ∀=⇒∀= ,0,, ωθθ
This implies that the set S is an invariant set.

Attitude coordination is achieved.
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Pose Synchronization
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A group of agents is said to pose synchronize when all agents
converge to the same position and orientation between the agents.
Namely, ( )
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Goal   Pose Synchronization

Fig. 8 Pose Synchronization (Omni)
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Control Input and Theorem 2
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Control Input
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Consider  the system with n rigid bodies represented by (1). 
Under the assumptions (A), the control input (4) achieves pose 
synchronization. Namely, 

Theorem 2

( )
( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=−

∀=−

=−

∞→

∞→

∞→

0lim

,0lim

0lim

jit

jit

jit

jiyy

yx

θθ　

　　　

　　

Fujita LaboratoryTokyo Institute of Technology

Tokyo Institute of Technology

Proof of Theorem 2
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Proof
For the convenience of notation, let 
Define the potential function as following

The derivative of this potential function along trajectories of the 
system (1) is given
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Proof of Theorem 2
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Therefore,      is negative semidefinite.V

Use LaSalle's Invariance Principle
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Proof of Theorem 2
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Define the set ( )
⎭
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2
|,,,: 3 ViyxS iiii
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From (A1) and (5),
EijyyxxV jijiji ∈===⇒= ),(,,,0 θθ&

Because of the strong connectivity of the graph,
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2
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In addition,

ivvjiyyxx iyixijijiji ∀===⇒∀=== ,0,0,0,,,, ωθθ
This implies that the set      is an invariant set.

Pose Synchronization is achieved.

S
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Expansion of Pose Synchronization
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Specifying the desired group behavior after pose synchronization
is achieved

Goal Desired Group Behavior

Modify the body velocity input (4)

Fig. 9 Pose Synchronization with Desired Behavior
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Control Input
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Control Input
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ℜ∈cycx vv , :  desired velocity 

ℜ∈= cc θω & :  desired angular velocity
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Theorem 3
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Consider  the system with n rigid bodies represented by (1) and 
supposed that             and      represent desired group trajectories. 
Under the assumptions that                            and the 
interconnection graph is fixed, strongly connected and balanced,
the control input (6) achieves pose synchronization and desired 
group behavior after the synchronization.

Theorem 3

cycx vv , cω
ici ∀<− 　

2
πθθ

Proof
Omit. (Please refer the resume.)
Proof uses the potential function following
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Two-wheel Robot
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Kinematic Model
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ℜ∈ii yx , :  position 

ℜ∈iv :  velocity 

ℜ∈iθ :  rotation angle

ℜ∈iω :  angular velocity

Control Input : iiv ω, wΣ

iΣ

:  inertial coordinate frame 

:  body-fixed coordinate frame

Fig. 10 Rigid Body Motion (Two-wheel)
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Attitude Coordination
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Consider  the system with n rigid bodies represented by (7). 
Under the assumptions (A), the control input (2) achieves attitude 
coordination. Namely, 

Corollary

( ) jijit
,0lim ∀=−

∞→
　　　 θθ

Fig. 11 Attitude Coordination (Two-wheel)
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Pose Synchronization

28

The goal is to achieve pose synchronization of two-wheel robots 
represented by model (7). Namely, 
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Goal   Pose Synchronization

Fig. 12 Pose Synchronization (Two-wheel)

This problem is very difficult, because model (7) has 
the constraint as following

0cossin =− iiii yx θθ &&

Henceforth, introduce my research progression.
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Approach
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Control of two-wheel robots’ positions and attitudes : Astolfi [6]

Using this methods, we can control them toward desired ones.
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παπ

i

( )dididii yxD θ,, :  agent i’s target states
φαρ kkk ,, :  gain

Fig. 13 Robot Kinematics (Two-wheel)

This system has the unique equilibrium point
In my approach, use this system’s target states.

).0,0,0(),,( 　　=iii φαρ

)8(
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Approach
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One Approach
Control Input (4)                  Target Position and 
Attitude

(A) Calculate input (4) from neighbors’ states.
(B) Suppose that the two wheel robot moves freely with control  

input (4) for a constant time, then determine the target position
and attitude after the constant time.

(C) Calculate               and take control input (8).iii φαρ ,,

target position and attitude),( yixi vviω trajectory

(A) (B) (C)

Fig. 14 One approach
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Previous Work
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A. Kwok and S. Martinez [8] (ACC, 2008.)
“Coverage Control with Unicycles via Hybrid Modeling”

• Use Astolfi’s approach for control unicycles’ positions
• Use hybrid system (many hybrid automata, flow state, jump state)
• Use ‘Hybrid LaSalle’s Invariance Principle’ for analysis
• Consider only agents’ positions
• Astolfi’s approach makes ε-neighborhood of the target point 

• Forward motion mode
• Rotation mode
• Resting mode

• Switching direction of travel
• Forward motion to rotation
• Rotation to forward motion
• Forward motion or rotation to resting
• resting to forward motion

Flow State Jump State
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Research Progression
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I challenge to synchronize only positions first.
I’m considering and calculating an appropriate 
potential function・・・(in progress).

Control Input (8)
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Fig. 15 Looks of analysis
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Experiment Environment
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Camera(Get Image)

PC(Calculation)

Wiport(Wireless COMM)

Image

Input
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Fig. 16 Experiment environment
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For collision avoidance, set up the virtual 
positions and synchronize them.

Fig. 17 Virtual Position Synchronization
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Fig. 18 Trajectories of Agents

Fig. 20 Time Responses of y-coordinates

Fig. 19 Time Responses of x-coordinates

Fig. 21 Time Responses of Orientations
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Conclusion

Future Works
•　Analyze pose synchronization of two-wheel robots
•　Accomplish graduation thesis

•　Achieve pose synchronization of omnidirectional wheel robots
•　Achieve attitude coordination of two-wheel robots
• Show the experiment of pose synchronization of two-wheel robots
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