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m Discrete Time Linear Stochastic System
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Distributed Control "

zl{X(t +1) = AX(t) + Bu(t) + Ww(t)
o(t) = Fx(t) + Gu(t) + v(t)

u(t) = o' @, u’@).....u"®] . o) = [o' ). 0 (t).....0° )] .
X(0) = X,,t =0,1,...,T. "N control stations

O ={#.k) [ 7=0l..,tk=12...,p} P observation posts
YO =P'@l ey <o
ob;ervation data utilized by control station |

u'® = 7'y

m Distributed Control Problem
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The common goal for all control stations is as follows.
Problem 1" team

min E{g (xt+ 17 %):)(t +1) +u®)’ %uo(t))}

xpectation

subject to
U= {u‘(t) =7ty ) |t=0L..,T;i= 1,2,...,m}
Remark 1"
Y =0, - classical information structure

i . . .
Y, # O, -nonclasswal information structuri

LQG with Nonclassical Information Structure

1
Remark 2"

(A) If information structure is_nonclassical, then optimal sol-
ution of LQG control Problem 7y € S is not always
an affine function(y™ (y) # Ky + k).

(B) Ifwe restrict ¥ € S_to an affine function and informati-
on structure is nonclassical, then LQG control problem
is in general nonconvex optimization problem.

o

We will consider the special case.
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Static Team Problem
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Definition 1"

If no element of U = {uj(r) [j=12,....,m;z = 1,2,...,t}
affects y'(t), then we call the distributed control pro-
blem the static team problem.

Theorem 1"
Static team problem is convex optimization problem
and the only optimal solution is an affine function.
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m Partially Nested Information Structure

Definition 212
If what U’ affects y 1mphesy - y forall i, j, then
the 1nformat10n structure is called partlally nested

"0

Theorem 2%

If the information structure is partially nested, then
the distributed control problem is equivalent to the
static team problem.
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m Distributed Control by Covariance Constraints
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Problem 2" . e’ + ul’|
u

stationary variance

z(t+1) ®,, 0 @; 0z
Z, ,(t+1D _ Cy Dy Dy 0 2,
z(t+1) 0 @, O Dy |z()
e+ [0 0 @, o,|z0
Lo w (t)
0 Lfu®| |w(®
@ 00 Lz(tJ lw
00 W, ()

23 z;(t)
ul(t) = #I(Zl (t), 22 (t—_2), Zs(t - l), 24(t - 2)) Z(t) = at=D
0L = wEE- ), 50,5 -,2,0-2) | "7
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m Distributed Control by Covariance Constraints

WO = mEOLC- DLt -Dne-2)
U (1) = 4(Z,(t = 1), Z,(t), Z,(t = 1), Z,(t - 2))
- Z(t - 2) is replaced by Z(t — 2).
u (1) = 2, (2(t = 2), W, (t = 2), w,(t — 1), w, (t - 2))
Uy (1) = 2, (2(t = 2), Wy (t = 2), W, (t — 2), W, (t — 1), w, (t — 2))

Z(t + 1) = dz(t) + Tu(t) + w(t)

> Time delay is at most 2-steps.
X(t +1) = Ax(t) + Bu(t) +Ww(t)

x(t) =207 wit - -2
=[x ® x2<t) 12<t>]T o

m Distributed Control by Covariance Constraints
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The covariance constraints are as follows.
7> Elaf + P )= € + Ju?)-
0=Ew (t - l)ul(t) = EX6(t)u1(t)

0 = Ew, (t - 2)u,(t) = Exm(t)u (t)
0 = Ewy(t - 1u,(t) = Bx, (thu, (1)
0 = Ew, (t - 1u(t) = Exs() (1)
0 = Ew, (t - 2)u,(t) = Ex,(t)u, (1)
0 = Ew,(t - 1u,(t) = Ex,(thu, (1)
0 = Ew,(t = 1)u, (t) = Ex;(thu,(t)
0 = Ew, (t - 1u,(t) = Ex;(t)u, ()
0 =Ew (t 2)“2(0 = Exlz(t)uz(t) ﬁ
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Discrete Time Linear Stochastic System
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We will consider the following system:
X(t +1) = AX(t) + Bu(t) + w(t)
z{ y(t) = Cx(t) + v(t) /,/mhite noise
where te Z,, x(t) e R™, u(t) e R™, y(t) e R"
Ex(0)=Ew()=Ev()=0
E x(0)x" (0) = 1, Ew(t)x' (0) =0
Ew(jw' (k) = EV(j)V' (k) =EYy(jV (k) =0 j=k
Ex(jw' (k)=0 j<k
Assumption 1
The information structure is partially nested
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m LQG with Covariance Constraints
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Problem 3"
, . v Txa)] [xc)
min Ex"(N)Px(N) + ;E{u(t)} QL“J
subject to  X(t + 1) = AX(t) + Bu(t) + w(t)
y(t) = Cx(t) + v(t)
X () = (x(0), x(1), ..., X(1))
un =X  Q es ™ Q>0

® T ® symmetric matrix
X X
E{u(t)} © L(tJ =7

o 1=1%..m %ovariance constraints a

m Property of Problem 3
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Remark 3

Problem 3 itself is not always a convex optimization

problem. Because Q > 0 implies that objective functior

— n,+n, . . .
is convex, but Q; € S implies that constraints are

not always convex.

Theorem 3"

Problem 3 is reduced to a generalized eigenvalue pro-

blem!?.

convex optimization problem
involving LMI
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m Property of Trace

Tokyo Institute of Technology

Remark 4(trace)
{x(t)]T [x(t)}
E Q = TrQV (x(t),u(t))

u(t) u(t)
Vs (X(©) vxu<x<t),u<t))} _ E[X“’}{X“T

V(x(t),u(t)) = { u(t) Jlu(t)

Vi (X, U)  V,, (u(t)
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m An Extension to Predictive Control
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We propose the following predictive control problem.
Problem 4 Nt prediction time
min Tr PV, (Xt + N | t)) + ZTr QV (x(t/+ kK|t,ut+k|t)
Hk k=0

current time

subject to X(E+1]t)=Axt|t)+Bu(t|t)+w(t|t)
yt |ty =Cxt|t)+v(t|t) symmetric matrix
X +k|t) = (xt|t),xt+1]1),..., x(t+/| 1))

UKD = 4 XKD Q ed™ ™, Q>0
TrQV(xt+k|ut+k|t) <y i=12,..m

[x(t +k | t)w covariance constraints
Elut+k[t|leD, 0eD
y(t+k| t)J ~__mean constraints ﬁ

Property of Problem 4

Remark 5

Problem 4 itself is not always a convex optimization
problem. Because Q > 0 implies that objective functior
is convex, but Q; € Shrh implies that constraints are
not always convex.

Tokyo Institute of Technology

Lemma 1(stability)

If the following conditions are satisfied, then the closed
loop system is asymptotically stable.

TrQV (Xt + N), g, (X(t + N))) + Tr PV, (Xt + N + 1)) <
<TrPV, (x(t + N)) stabilizable input

X(t + N) e O, maximal output admissible set
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Proof of Lemma 1
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Proof of Lemma 1

Let J !x(t), o, N ' be a Lyapunov function.J (X(t), L N)
is defined as follows. .

I(x), 4, N) = min Tr BV (X(E+ N) + 3 TrQV(x(t+ k), u(t + k)

XX XX

Then, we obtain from the conditions
(Xt + 1), 17, N) = Tr PV (X(t + N + 1) + min 3 TrQV(t + k + 1, u(t + k + 1))
Hy k=0

N-1
< TrPV,, (Xt + N +1)) + min ZTr QV (X(t + k), u(t + k)) +
M

+ TrQV (x(t + N), gy, (x(t + N)))
It + 10, 2N )= I(x¢t). . N
STrQV(x(t + N), gy (X(t + N))) + Tr PV, (x(t + N + 1)) —
= Tr BV, (X(t + N)) = min Tr QV (x(t), u(t)) < —min Tr QV (x(t),u(t)) <0,

XY xx

min Tr QV (x(t),u(t)) = 0 < minV (X(t),u(t)) = 0. ]
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m Problem 5

We rewrite Problem 4 as Problem 5.
Problem 5

min TrRV, (x(t + N[ ) + E{[XT @ WT}f[X(\tA) t)} +UTOU + 2UT‘PT[X(\tN| t)}

Tokyo Institute of Technology

subject to E{[XT € WT}{{X(\;\) t)} +UTDU + 2UT\P;[X(;V| t)ﬂ <7

i=12,....m k=01,..., N -1 e (1)
E O Xty euU,<T
W + 0, =< e (2)

u(t | t) w(t | t)
ut+1/1) W w(t +1]t)

ut+N-=-1]1t) wt+N-1]t)
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m Optimality Conditions of Problem 5
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T X[t T ShY T X[t
EJl2<I1U +z~y[ W }}+®uﬂ'+2k=0§1§.(5{®w +‘I’k.[ W }}]:0"_(3)
q T ] [XETO] e 1T XTI _
@,[E{[x @ty w }({ W }U QU +2U ‘I’{ W }}—7.]—0 =2 (4)

A'{E{@iw[x(\tlvl t)} + @d’u} —F'J =0 ...(5)

[ 1T 2 T r T]r [ 1T rT]r
O =0w Ow - O |, Oy =10, 6y 0,

r:=[r - F'T]', A0, 420 A=A A - A
i=12..m k=0L..N-1 j=12..r

E{[XT L) WT}({X(t ! t)} +UTOU + 2u7w;{x(\tN‘ t)}} <

w

E{@xw{x(tm}@uu}gr, <i>::¢w+§iifi&rki >0, \P::T+Niliig\?ki
w k=0 i=1 ...(6) k=0 i=1

X “~” means that corresponding constraints are active. m
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m Optimal Solutions of Problem 5
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We will consider 4 patterns.

1) condition (1) and condition (2) are inactive

X(t [ 1)
w

I1) condition (1) is active, but condition (2) is inactive

We can obtain an optimal solution by solving a general
ized eigenvalue problem!®) from Theorem 3%

1ii) condition (1) is inactive, but condition (2) is active

We can obtain an optimal solution explicitly!?) .

IV) condition (1) and condition (2) are active

We can obtain an optimal solution by solving a followi-

ng problem. a
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U= -cb"llﬂ[

m Problem 6
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Lemma 2
If condition (1) and condition (2) are active, then Pro-
blem 5 is reduced to Problem 6.

Problem 6
max_ S,
31’52’/?]»413
R T [XEIDT J) e [xt Y
subjectto E 7s‘+sz+k:0§/ﬁ'[[x oy w }Y{ W }7%] \P{ w :| 20
Ky w' &
ST 71
El::ﬂzfz eufi}zo
1'e, o

S5eR, s, eR. A >0, >0, 20

1
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Implementation Methodologies

We will consider two approaches for implementation.
First approach is Model Predictive Control approach(M
PC approach). And second approach is Multi-Parametric
Quadratic Programming approach(mp-QP approach).

Algorithm 1(MPC approach)

Initial Condition: t:=0 How to compute?
Step 1: Compute Problem 5 @

Step 2: Tnput u®) = x,x@O.W). future work
Step 3: Lett:=t+1and goto Step 1.
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mp-QP Approach

Algorithm 2(mp-QP approach)

Initial Condition: t:=0

Step 1: Look up an optimal solution in a table.
Step 2: Input u(t) = g, (x(t),W).

Step 3: Lett:=t+1and goto Step 1,

How to get a table and search an optimal solution?

.
future work
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m Outline I m Information and Computing N
information | computing
@] global global » centralized control
1. Introduction ®m global local m» distributed computing
2. State Feedback Predictive Control Law @m local global m» centralized control
3. Distributed Synthesis Procedure @m local local m» distributed control
4. Conclusions and Future Works The type of control laws that we proposed in the previo-
us section was (1) or B) as shown above. Those are not
distributed control laws but centralized control laws.
—— |t re Work
. We propose control laws those type IS 12) or )y
m Overlapping Decomposition m Overlapping Decomposition
We will consider the following system and LQ cckmtrolfp;r‘o Theorem 420) o

blem' X (t+1) Al Ari A x@® B, '0 t
e )| = | Ay, AR x|+ 0 [0 [“'ﬂ
xt+D] [A A, A x®] [0 B, %O

<
. X(t+1) _ Al Ay | x@® B,
Vot en] Ay Aufxm] T

i
o [xz(t + 1)} - [Au Au}[xz(o} . [ 0 }uz ©
xt+D] (A A fx®] |B

<
X (t+1) A, A12 0 A13 X (t) B, 0
~sz<t+1> _[Aﬂ A, 0 AJLZ«) Loo [u,a)}
TEE | [ATTOTA A xm || 070w,
h(tﬂ) [Am 0 A, %Lm 08, 2

If K, and K, are chosen to stabilize and optimize the
decoupled subsystems as shown below, then the origin-
al system is stabilized, but this is a suboptimal control

law for the original system.

Uy (t) = K{X‘(t)} U,(t) = KZ[XZ(U}

future work

%, (D)

()

» We will consider optimality and relation with cova-
riance and mean constraints.
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Conclusions and Future Works

Conclusions
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* We have proposed a predictive control problem with
covariance constraints and showed optimal solutions.

* We have discussed distributed synthesis procedure.

Future Works

 Considering non-convexity of Problem 4

 Considering implementation methodologies

* An extension to output feedback control law

* Considering information structures more precisely

 Considering decomposition methodologies 0
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