

Stability Analysis

Lemma 1

$$u_k \in \widetilde{Q}_1(x_k) \iff u_k = p_{k+1}$$

Proof

It's obvious from the definition of $\widetilde{Q}_1(x_k)$, if $u_k \in \widetilde{Q}_1(x_k)$, then $u_k = C(Ax_k + Bu_k) = p_{k+1}$ and vice versa.

Stability Analysis

Lemma 2

Suppose that $N_i(k) = \phi, m^i \notin \widetilde{Q}_1(x_k^i)$ and $r_k^i = m^i$, then $K_k^i \neq 1$

Proof

From $u_k^i = K_k^i p_k^i + (1 - K_k^i) r_k^i$, $0 \le K_k^i \le 1$ and $N_i(k) = \phi$, there is a path for agent to move $\rightarrow u_k^i \ne p_k^i \rightarrow K_k^i \ne 1$

Stability Analysis

Lemma 3

Suppose that $r_k^i = m^i$, then $\lim_{k \to \infty} u_k^i = m^i$

Proof

$$\begin{split} \text{From lemma 1,2}: & \ 0 \leq K_k^i < 1, u_k^i = p_{k+1}^i \\ u_k^i = K_k^i p_k^i + (1 - K_k^i) m^i \\ u_k^i - m^i = K_k^i p_k^i - K_k^i m^i = K_k^i u_{k-1}^i - K_k^i m^i = K_k^i (u_{k-1}^i - m^i) \\ = & \bigg(\prod_{i=1}^k K_i^i \bigg) (u_0^i - m^i) \end{split}$$

 $\lim_{k \to \infty} (u_k^i - m^i) = 0 \to \lim_{k \to \infty} u_k^i = m^i$

↑ Stability Analysis

Lemma 4

Suppose that $r_k^i = m^i$, then $\lim_{k \to \infty} p_k^i = m^i$

Proof

 $\begin{aligned} \text{From lemma 1,2}: & \ 0 \leq K_k^i < 1, u_k^i = p_{k+1}^i \\ & \ p_{k+1}^i = u_k^i = K_k^i p_k^i + (1 - K_k^i) m^i \\ & \ p_{k+1}^i - m^i = K_k^i p_k^i - K_k^i m^i = K_k^i (p_k^i - m^i) \end{aligned}$

 $= \left(\prod_{t=0}^{k} K_{t}^{i}\right) (p_{0}^{i} - m^{i})$ $\lim(p_{k+1}^{i} - m^{i}) = 0 \rightarrow \lim p_{k}^{i} = m^{i}$

Stability Analysis

Theorem

Suppose that $N_i(k) = \phi$ and $r_k^i = m^i$, at the steady state the agent converges to the predefined configuration.

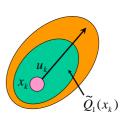
Proof

The proof is followed from lemma 3,4.

Remark

- Normally, we don't need to set the input inside the onestep reachable set because the next position always lies inside the one-step reachable set. (but the direction must be the same)
- Exception : When $m^i \in \widetilde{Q}_1(x_k^i)$, the input must be

 $u_k^i = m^i$



Simulation

$$x_{k+1}^i = \begin{bmatrix} 0.87 & 0 & 0.32 & 0 \\ 0 & 0.87 & 0 & 0.32 \\ -0.46 & 0 & 0.33 & 0 \\ 0 & -0.46 & 0 & 0.33 \end{bmatrix} x_k^i + \begin{bmatrix} 0.13 & 0 \\ 0 & 0.13 \\ 0.45 & 0 \\ 0 & 0.45 \end{bmatrix} u_k^i$$

$$y_k^i = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} x_k^i$$

$$d = 0.5 \quad d_s = 2.45$$

$$-10 \le p_k^i \le 10, -1 \le v_k^i \le 1$$

$$x_0^1 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T \quad m_0^1 = \begin{bmatrix} 2.5 & 0 \end{bmatrix}^T$$

$$x_0^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T \quad m_0^2 = \begin{bmatrix} -2.5 & 0 \end{bmatrix}^T$$

$$x_0^3 = \begin{bmatrix} 0.5 & 1 & 0 & 0 \end{bmatrix}^T \quad m_0^3 = \begin{bmatrix} 0.5 & -4 \end{bmatrix}^T$$

