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I h l Search Problem

—| Search Problem

To locate the target
deploying agents with the available resources.

protection against submarine attacks
search and rescue operations
detecting lost objects

clearing of land mines

location parts in a warehouse
medicines, mining, ...etc.

I 1" Types of Search Problems

One-sided Search Two-sided Search
the searcher chooses his strategy the searcher and the target

the target neither chooses a can choose their strategies

strategy nor reacts to the search

ex. ex.
Stationary|in search for lost car keys Q hide-and-seek
Target |l search for natural resources

eXCooperative Search

ex. the target attempts to make
Moving [|Q search for itself as detectable as possible
Target a life raft in the ocean Non-Cooperative Search

O the target moves randomly | the target tries
to remain undetected

ex. Pursuit-Evasion Game

I 1" Continuous and Discrete
Continuous Search gj Syt [¢]
continuous time space .
and v

continuous state space

A

Discrete Search

discrete time space
and(or)
discrete state space

R

I h l Objective of Search

B Maximize the probability of locating the target.
B Minimize the time to find the target.
B Cover the search area.

B Decide whether the target is present in the search area.




I h l In Previous Works

The dynamics is largely ignored.

e

"
n Unmanned Aerial Vehicles (UAVS)
9nt (non-holonomic system)

=

Q

I 1" Approach to Search Problem

Approach

take account of agent system explicitly
limit control energy consumption

continuous-time linear system

discrete search
discrete observation time (but not discretize state space)

maximize the probability of locating the target

agent G One-sided Search Two-sided Search
Stationary M. Saito, et al., CCS, 2008.
: g Target
The argument about the available resources is not enough. Vovi Cooperative Search
oving in this presentation | ---s------——"— -~ |
Target Non-Cooperative Search
K Objective of Study K Outline

Optimal Search Problem

maximize the probability of locating the target
+

Optimal Control Problem

limit control energy consumption

4

formulate Optimal Search Control Problem

provides its approximate solution algorithm

The effectiveness of the proposed method is demonstrated
through a numerical simulation
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B “One-sided search” — “Moving Target”
O Problem Setting
Q formulation
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I 1" Problem Setting

jo!]

ent system
x(t) = Axz(t) + Bu(t)

)= {y(t)] position: y(t) € R™
T @ (ny € {1,2,3})

observation time (obs. time) :
tkak — 071727'”

obs. point Yy := y(tx)

waypoint x;, 1= x(tg

I 1" Problem Setting

the obs. points set from tp to [tq
\)/pitlr = {'ypa Yp4+1:7 yq}

the obs. points row from tpto Tq
Vp:q = (Yp Yp+1," ' Yq)

sort(Vp:q)
— sort of elements of Vp:q

1

: ex. Vi3 :=(b,a,c) i

! y Vi3 := {a,b,c} '

' a 1 sort{ V.2 !

o ort(V1:3) i
1

= {(a,b,c). (a, c.b), (b, a. ).
' 8y3 (b.c.a). (e, a.b). (e, b,a)}
1 1




oy Problem Setting

search area: & C ’R,2, z €&
the importance of search:

h Search and Control

optimal search optimal control
minimize search level S <:::> minimize control energy

4 ¢(z) > 0 (large — important) tradeoff
S(Vr—gt1:1) S(Vi—gt1:1)
sensing accuracy € [0, 1) )
good bad 2 monotonically
py(llz —will) =1 - e Mz—uill decreasing!
obs. level € [0, 1] i ;
good bad H ' ! i ' i
p(z,Vpig) = py(llz —wilD) — ' :
Yi€Vpig tr tg Upts it tgthk  thtf ¢
search level at time ¢, (small — good) criterion function for optimal search
S(Vgt1:4) 1= 2)0(z, YViegr1:1)d2 o par X
(Viegta:i) f $(2Ip(=, Viegtr:k) B = 3 SOegrrn)
ge{l,2,...}, f>g+1 i=max{g.H1}
| Optimal Search Control Problem h Reduce Problem Al
Problem Al min S [ @ Run
k-1 e w(t)t€ltetitr] = It
. T T ®
min u” (t)Ru(t)dt — min | Ty = 1 o) = i
L‘(t)ste[tkstk-{-f] zgk /tz () Ru(?) = min [)f] N[xk] e [mf (w0 = v(@i wapn). t€ [t tiga])
T
Yi Yi —
st Wizppr 2, by =iy 7= argmin 5(Vy ) = min |, {%’%{f” HET ﬂ
Vi1 ketef Y | 2 Yikf
M r 9
= — it (o 1 =T T | o | g = |Fh2| = g1 o | %
It's difficult to get global optimal solution. = |5, | (el TR D P Y B He R | Y
* x ket
G J;‘-;;.+f(}'a+1:k+f)
- — ]
relalxatltlnn of th(-,; colnd?tlon [ Problem A2
get local optimal solution - X =
: o 0BGy , Problem AL| > _min JE g (Vi)
Vigwts € (. f) 1= {JH-LH-! v =0Vvy, € J'_-'.+1_-'.+r} - Yottt s ~ o
y; st Yeprutr = Vi € 0V f)

| Approximate Solution Algorithm

—| Algorithm 1 }

fk=0
1 Vi, e () = {J-‘] "

dS(V1:9) _ )
e 0 V;n € Y1y
5(Y1.,) F.index

oy ie{1,---,g}

2. Vg = _ argmin T 14 (V114D
Yig€50rt (V] ) My =1
E:> get a round path to minimize control energy
— enumeration method O(g")
— approximate solution : Ant Colony Optimization O(g2)

— gradient method ¥/ "' =y +0;

end if

ol
Fl

3. Yy =y, 0 =1,2,...

I : l Lemma 1

Algorithm 1 leads below. (k = g,9+1,...)
Vgt = V1 ---
S(Vigtr:) = S(V1:y) == (2
OS( Vigi1:k
Viegrrn € @0, g) = {)'1,-.. G+l % =0Vy € 3’-‘.--;.4—1::.-}‘ -- 3
DI cisin e
(J‘.;yfl')=ov-’5“-2‘---} -—- @
proofi(1) » Y1y = {1} UVayy = Vory U {yiag) = Yoty (o Y14y = w1)
Repeat above.
(2) — obviously by (1)
(3) — obviously by y,.,, € ®(, g) and (1)
@— (J.S(J;;m-*-) =0Vvje {1,2,...}/{k=g+1,.... k}
becausje S(V)_y+1.1) is not depend on ¥;.
S Whghrc) _ ¢ Vi€ (kmgtl,.. .k
=o0v, gF1 }by (3). 0

Jyj




h | Theorem 1

Theorem 1

J7A+1:;.+J gotten by using Algorithm 1
is one local optimal obs. points row of Problem A2,

t|  Receding Hotizon Control

at time b horizon : t € [ty,, tyyy]

Optimal Search Control Problem
Vi1 (Algorithm 1)

5 Yk
_ _ I Yntr
so that, Vs = Vigaugy € @O f) V2| = Bk e u*(t),t € [ty, tits]
oot 4 >
Vie {k+1, k+f}, W) = Pl i), b€ [t tip] w*(t),t € [t tppa)
BCugy) _ N 95O T
oy i=max{g.iH) Ay -
A1) attime tp41  horizon : t € [tyq, trga4s]
=0 ( dy:" "~ =0Vje{1,2,...} byLemmal f4}) same above ...
SO Vigrikr = Vi1 etr € ®(F1k. 1) @
. 0 :
h| Converge to Periodic Trajectory | Theorem 2

Lemma 2

SUPPOSE tipq — t; = tijaqg — titg, @ = 1,2,... and T =ty,—t;.
| Algorithm 1| + [9(tx +T) — §(tx) — 0 (as k — o0)|

E:>The state (input) trajectory converges to a periodic trajectory.
(period T")

proof: Algorithm 1 E:> y(t;+T) =y(t), y(tipa +T) = y(tipa)

If 9t +7T)=9y(t;), y(tipr +T) = y(tiyr),
then z(t+7T) = =(t), u(t +T) = u(?), t € [t;,ts1]
(2w () = ¢r(mi wgqn). 5(t) = Y@, @), € [tirtiga])

So if 9(tx +T) —9(tx) = 0 (as k — 00),

—ITheorem 2}

SUPPOSE iy —t; = tipryy —tiyg, i =1,2,...aNd T =t —t,.
0

GIKl == [Inyxn, 0 -+ O]HF'MHLWK | o | (Glk+g] = GIK)

Inyxny

elk] =gty +T) — y(ty)
If e[k+1]= GIklelk]. GIk+g] = GIk] is asymptotically stable,
then the state (input) trajectory converges to a periodic trajectory.

Yk
w»#f ’
y(tr)

proof:

9(tigr) = = [Lnyxn, 0 - O H3 [KIHI K]
Il

Y1

Yk
Y
itz Yt

:

Yits
Uk

= —H3 ' [MHS K]

Uk,

Yitg
then, the state (input) trajectory - Wtigs +T) = [Inyxn, 0 -+ O]|H5 [ikg] HE itg] yH:Hy
converges to a periodic trajectory. 0 9(tropg)
| Theorem 2 | Corollary 1
elb+1] = 4t + 1) — 9(ts) Suppose ty —t; =h, i=1,2,... and T =gh ,
0 . p—
R e B £ Glk+1] =Gkl =G, k=12
$ltrge) — 9(t) E:> e[k+1] = Ge[k] is time-invariant system.
0
= [Inyxn, 0 - 0]H31[k]Hg[k][ 5 Corollary 1
elk] . . .
0 If [N <1, i €{1,...,ny} () is an eigenvalue of 3),
= [Inyxn, 0 -+ O] H3'[K1HL K] 0 }e[k:] then the state (input) trajectory converges to a periodic trajectory.
Inyxn
o roof:
= Glk]e[k] P

If elk+1] = Glkle[k], Glk+g] = G[K] is asymptotically stable,
then e[k] = y(tx + T) — y(tx) — 0 (as k — o0).
And by Lemma 2,
the state (input) trajectory converges to a periodic trajectory.
0

If N <1, ie{l,...,ny}
then e[k+1] = Ge[k] is asymptotically stable.
and lelk] =yt +T) —y(t) - 0 (as k — oa).
And by Lemma 2,
the state (input) trajectory converges to a periodic trajectory.
0




search level S(V_gt1:1)at ¢,

the sum of control energy

h | Simulation h | Simulation
agent system £ =[0,40] x [0,40]
B — — . 20 steps
00 0 1 00 (=) =1
EW=150 -1 o|"DF|1 o|*®D ¢, =ih, h=5
00 0 -1 01 o
N R = diag(1,1) - 3
xg = [12 12 0 0] A= 0.02 - -
f=51lg=4 gzs gzs
E> eigenvalues of G = —0.1250,—-0.1250 _g 0 \ _g 0
L) converge to periodic trajectory (period I’ = 20) f:: > f::
random walk based method 40 D I3 5 5
D= {z € Eylllz — yill < r} 7 0 30 ] 1 % 30 ]
/ z -displacement{m] z -displacement{m]
&4 discretize & 0 E%
select ¥it1€ D randomly |
- = 60 0 —~——_ proposed method random walk based method
0 40
| Simulation | Outline
B Search Problem
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h | Cooperative Search

Cooperative Search
“Two-sided Search” — “Moving Target”

ex. Rendezvous Search
Each party behaves in a manner

that maximizes the chances of one party finding the other.
Each party attempts to make itself as detectable as possible.

ex. Two people have become separated in a crowd
and wish to find one another again.

€X. Searching for an intelligent person lost in the woods
who understands how the searchers will operate.

That person may try to move to a place
where he can be found more easily.

h | Rendezvous Search

Rendezvous Search

This is the problem that arises, for example,

when two people shopping together in a department store look around
and see that they are no longer together.

How should they proceed to find each other?

Should one stay still and hope that the other is searching the whole store?
What should they agree in advance to help them if this situation arises?

- quoted from [5]

® symmetric rendezvous search
Agents use same strategies.

= asymmetric rendezvous search
Agents can use distinct strategies.
ex. “Wait for Mommy”
One player stays still while the others searches the entire space.




Ll

Rendezvous Search Control

“Wait for Mommy” strategy

One agent stays still while the others searches the entire space.

1.

Decide the role of each agent.
(one target)
The target agent stays at initial position.
The searcher searches “the stationary target”.
|:> ([27] and last presentation)
Each searcher can detect the target agent
with probability one (as t — ©0).
When the searcher detects the target,
he moves to the position of the target.

2%

The rendezvous will be achieved!

1" Conclusion and Future Works

Conclusion

“One-sided search” — “Moving Target”
formulation of Optimal Search Control Problem

its approximate solution
the condition to converge to a periodic trajectory

The effectiveness of the proposed method was
demonstrated through a numerical simulation

The introduction of “Cooperative Search”

Future Works

Cooperative Search
reduce computation time
search control under non-convex state constraints




