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Discrete Time Linear Stochastic System Distributed Control Problem
Distributed Control ¥ o, The common goal for all control stations is as follows
o Problem 1% team
¥ {x(t +1) = AX(t) + Bu(t) + Ww(t) T
o(t) = Fx(t) + Gu(t) + v(t) min E{z (x(t + D" Qx(t +1) +u(t) Buo(t))}
t=1 >0 >
u(®) = u' @, v @,....u"®] , o) = [o' ), 0*). ... 0" ®)] . xpectation
subject to

x(0) = x,,t=01,...,T

o1 control stations
O =1{r.k)|z=0L....,tk=12,..., p} P observationposts

y' (1) = 0@ | k) ey o}
observation data utilized by control station i

u'(t) = 7't y'()
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U= =7y O [t=01..T;i=12...,m|
Remark 1

Y =0, # classical information structure

\AEe) # nonclassical information structur
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LQG with Nonclassical Information Structure

Remark 29

(A) If information structure is noncla%sical, then optimal sol-
ution of LQG control problem ¥ " e S isnot always
an affine function.

(B) If we restrict that 7 € S is an affine function and infor-
mation structure is nonclassical, then LQG control prob-
lem is in general nonconvex optimization problem.

.

We consider the special case.
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Static Team Problem
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Definition 1%

If noelement of 4 = {u"(r) [j=12,... mz=12...,t
affects y' (t), then we call the distributed control prof
blem the static team problem.

Theorem 1%
Static team problem is convex optimization problem
and the only optimal solution is an affine function.
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Partially Nested Information Structure

Definition 202
If what u’ affects y' |mpI|esy c y forall i, j, then
the mformatlon structure is called partlally nested.

y'ul
00
Theorem 2V
If the information structure is partially nested, then

the distributed control problem is equivalent to the
static team problem.
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Distributed Control by Covariance Constraints
6), 7
Problem 2°%"

. 2 2
min E{” +

(t+)] [®, 0 @5 0 z®]
7,(t+1) _ Dy Dy Dy 0| Z,()
z(t+1) 0 Dy Dy Dy 2,(Y)
7,(t+1) 0 0 @y D z,(1)]

stationary variance

Lo w;(t) |

o Slule o

0 0 w,(0) |
z, 20

ul(t) = /“1(21(01 Z (t—_Z), Zs(t -1, 74(t - 2)) Z(t) = a(t-
L0 = LEE-.2,0.50-020-2) |7
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Distributed Control by Covariance Constraintsw
U () = 4(Z), Z,(t - 2), Z,(t - 1), Z,(t - 2))
U (1) = (2t -1, 2,), Z(t - 1), Z,(t - 2))
P z(t - 2) isreplaced by z(t — 2).
U () = 2 (2(t - 2), Wit - 2), wy(t = 1), wy(t - 2))
Uy () = 2, (2(t = 2), wi(t = 2), Wy (t — 2), W, (t — 1), wy(t - 2))
z(t +1) = dz(t) + Tu(t) + w(t)
<UL Time delay is at most 2-steps.
X(t +1) = Ax(t) + Bu(t) + Ww(t) - (1)
x(t) = [z07 wt-1" wi-2)[
=® %O . %O
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Distributed Control by Covariance Constraints
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The covariance constraints are as follows.

7> Elfzf’ +[ulf) = E(* + ) -
0 = Ew,(t - 1y (t) = Bxglhslt)

0 = Ew,(t - 2)u,(t) = Ex,o(thu(t)

0 = Ewy(t - 1uy(t) = Ex, (t)u,(t)
0= EWA _1)U (t) Exs(tpl(t)

0 = Ew,(t - 2)u,(t) = t

)=
0 = Ewy(t - 1)u,(t) =
Ju,(t) =

0 = Ew,(t - L)u,(t
0 = Ew,(t - 2)u,(t) =

(
(
(
(
0 = Ew,(t — 2u,(t
(t-
(t-
(
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State Feedback with Covariance Constraints
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6), 7 —
Theorem 3 ?for)every ¥, the following statements are equivalent.

(i) There exists a feedback law U(t) = z(x(t)) that
together with (1) has a stationary zero mean solut-|
ion satisfying covariance constraints

x| 4| X x| o] X _

i P W
u u u u

(if) There exists a positive semidefinite X = E J[

Xxx Xxu Wlth
= X, >[A BX[A B] +ww'..

XUX X
7 > tr(XQ") = tr(XQ°) = =tr(XQ )
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m State Feedback with Covariance Constraints m Outline
Moreover, if L = X, X and X satisfies the conditio-
ns of (ii) , then the conditions of (i) hold for the linear )
control law u = LX + v, where v is a zero mean stoch 1. Introduction
astichariabIe independfnt of w and X and with 2. State Feedback Control Law
Evy = X, = XX Xy S
3. Kalman Filtering
Remark 3*? 4. Output Feedback Control Law
x| [x] ( i) ~ 5. Distributed Synthesis Procedure
Bl Ql |57 < tXQ)=7 6. Conclusion and Future Works
m Kalman Filtering with Uncertain Covariance m Kalman Filtering with Uncertain Covariance
Theorem 4" For every ¥, (i) and (ii) are equivalent. Moreover, if K = SX’XISXy and S satisfies the condition
We+D] [Ad®+vie e volvel i s in (ii), then the conditions of (i) hold for the estimator
{ Y0 }‘ {cm) +e'(t)} L’(OL«)} j=12..9  [definedby
(i) There exists a map v such that the state estimate R(t+1) = AR(t) + K[CR(t) - y(1)]
X(t) =v(y(t -2,y —2),y(t-3),..)forall t
satisfies covariance constraints
Efx® - 20| = 0 - 20| = =0 -0 <7
(if) There exists a positive semidefinite S =
Sy Sy |With
S, >[A cls[A c] +1 -+
Syx Syy = 1 2 53
7 2 tr(SR’) = tr(SR) =... = tr(SR").
Tokyo Institute of Technolog) Fuiita Laboratory. 15 JTokyo f
m Outline m Output Feedback with Covariance Constraints
Theorem 5 N For every ¥, (i) and (ii) are equivalent.
: Xe+1)] _[AI®D)+Bu) +v (1) E{V’(t’}[w“q g
1. Introduction { y(t) } [ () +e' () } e'®e'®]j=12,..,9
2. State Feedback Control Law (i) There exists a stabilizing feedback law u(t) =
3. Kalman Filtering v(y(t 1), y(t - 2), y(t - 3)....) with stationary
4. Output Feedback Control Law SOIUUOQS forj = ]*2""_' J such that )
L . x! i x!'| covariance constraints
5. Distributed Synthesis Procedure E Q
. u u
6. Conclusion and Future Work
has the same value for all i, j e {1,2,..., J} and
the value is not greater than 7 .
Tokyo Institue of Technolog —mm Tokvo Institute of Technology —mmﬂ
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Output Feedback with Covariance Constraints Outline
(i) The conditions of (i) hold for the feedback law d-
efined by
R(t +1) = AR(Y) + S S, [CR(t) — y(t)] 1. Introduction
u(t) = X, X X(t) 2. State Feedback Control Law
where the matrix x[i iﬂ satisfies (2), (3) with 3 Kalman Filterin
minimal possible y and s-[- | satisfies (10), ) Iitering
(11) with minimal possible 7. 4. Output Feedback Control Law
5. Distributed Synthesis Procedure
6. Conclusion and Future Works
Tokyo Institute of Technolog) Fuiita Laboratory. 19 Tokyo Institute of Technolog) Fuiita Laboratory 20
Dual Decomposition Saddle Point Algorithm
% 2 Algorithm 1

U, U, U, U, : concave,
max Ul(Wl + Ul) + Uz(Wz U + uz) + U3(W3 - uz)
e = dual decomposition
{niE max U, (w, +uy,)+ U, (W, — U, +u,,

+ Uz(Ws - usz) + /121('-"21 - u11) + ﬂqs(ugz - uzz)
= for fixed 4,
nlazx Ul(Wl + u11) - ﬂuuu

max Uz(Wz — Uy + uzz) + /121u21 - ﬁ'zzuzz

Uz1,Uz

naix Us(Ws - uaz) + /Lzsusz
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A gradient search for the saddle point
mjn max U (4, x)
has the dynamics

i _
ﬂ_ oL !

U : strictly convex-concave

(= U
X =2,

Static Team Problem

Theorem 62
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J J :
) LninK EZ Vi + zBik(KkYk){
1Ko Ky T k=1 Qj
. : ; 2 J o, «
:r{]% [(EL E; Vi +§Bjk(Kkyk#Q‘ Jré(ﬂijﬂyj *lijjkyk)
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Dynamic Team Problem
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Theorem 7%
K,,ETT‘.,KJ Z'f:tr(Qj[l i Bijk(eim)]V’kl (“’)['jl leKl(eiw)”j“’

) T\% m,ﬂ lzklj:: {tr(Qj[l K Bijk(ei”)]¢kl(a,)[|jl BjIK|(elw)T)
* tr[AJk(eiw)* Kic (em )]_ tr[Aki (eim ) K (em )]}Ua)

8
Remark 4 ) ,
J J
Ez Vi + Z Bjk(Kk * yk#
j=1 k=1 Q

QZJ‘:,“(QJ'[IW Bijk(eiw)]ﬂﬁkl(“’)['n leKl(eim)]‘)dw
i |
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m Outline m Conclusion and Future Works
Conclusion
1. Introduction « We have introduced team theory.
2. State Feedback Control Law
3. Kalman Filtering Euture Works
4. Output Feedback Control Law « Adistributed algorithm with information structures
5. Distributed Synthesis Procedure considering complexity
6. Conclusion and Future Works « An expansion to predictive control
« A graph theoretical approach to information
structures
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Problem 3

- ] N-1 X(k) i X(k)
min Ex” (N)Q,X(N) + e E{u(k)} Q{U(k)}
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State Feedback with Covariance Constraints State Feedback with Covariance Constraints

Examp|e 2: Vehlcle Formation Contr0| 3) Each vehicle knows its position and also the position of
the vehicle in front of it.
m|n E(z,)? + EZ(Z 7,.,)" + E(z) + IOEZ(U )? z

1 2 3 Z, Zs
i=1
z(t+1)_z(t)+u(t)+w(t) . . . . .
i=12,...5 4) Each vehlcle knows the posmon of nelghbors
1) Every vehicle knows only its position.
A A o-o0-0-9-@
‘ . . ‘ . optimal value of the cost function

2) Every vehlcle knows the posntlon of every other vehicle

Q Q Q . . 07.91° > 27.27Y > 26.53" > 26.49
_mmma

Tokyo Institute of Technolon

Tokyo Institute of Technolog

Kalman Filtering
Definition of LQG™

1) Linearity

2) Whiteness

3) Gaussian

4) Quadratic Criteria
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