

|

- 1. Introduction
- 2. Asynchronous Coverage Control

Outline

- 3. Optimal Assignment for Routing
- 4. Conclusions and Future Works

★ Asynchronous Coverage Control Algorithm

Asynchronous Coverage Control Algorithm

Initial Conditions

For $i \in \{1,2,\ldots,n\}$, let local time $t_i \coloneqq 0$. Command monitor() and get neighbors $\mathcal{N}_i(t_i)$. Send $p_i(t_i)$, $\tau_i(t_i)$ to neighbors $\mathcal{N}_i(t_i)$. Compute time-space Voronoi region V_i^{ts} , compute centroid $C_{V_i^{ts}}^{ts}$, compute projected centroid $C_{V_i^{ts}}^{ts}$. Asynchronous Coverage Control Algorithm

Takey Institute of Technols

Step 1

Command monitor() and get neighbors $\mathcal{N}_i(t_i)$. Send $p_i(t_i)$, $\tau_i(t_i)$ to neighbors $\mathcal{N}_i(t_i)$.

If $p_i(t_i) = C^s_{V^t_i}$, compute time-space Voronoi region V^{ts}_i , compute centroid $C^{ts}_{V^t_i}$, compute projected centroid $C^s_{V^t_i}$, and send $stop_i$ to neighbors $\mathcal{N}_i(t_i)$.

If $stop_j$ is sent, compute only i-j partition in time-space Voronoi partitions, compute time-space Voronoi region V^{ts}_i , compute centroid $C^{ts}_{V^{ts}}$, compute projected centroid

Asynchronous Coverage Control Algorithm

Step 2

 $egin{aligned} \mathbf{Compute} & \mathbf{velocity} & \mathbf{parameter} & k_i, & \mathbf{compute} \ u_i(t_i) &:= k_i(C^s_{V^{ts}} - p_i(t_i)), & \mathbf{input} & u_i(t_i). \end{aligned}$

Step 3

Let local time $t_i := t_i + 1$ and go to Step 1.

Function List

 $egin{array}{ll} {
m monitor}()\colon & {
m searching \ neighbors \ utilizing \ MONITORING \ ALGORITHM. \end{array}$

J. Cortes, S. Martinez, T. Karatas and F. Bullo, "Coverage control for mobile sensing networks," *IEEE Transactions on Robotics and Automation*, Vol. 20, No. 2, pp. 243-255, 2004.

Outline

1. Introduction

 $C_{V_{\epsilon}^{t}}^{s}$.

- 2. Asynchronous Coverage Control
- 3. Optimal Assignment for Routing
- 4. Conclusions and Future Works

1. Introduction 2. Asynchronous Coverage Control 3. Optimal Assignment for Routing 4. Conclusions and Future Works

- utilizing a soft-margin technique for inseparable data
- handling non-linear rules utilizing kernels
- · no local optima

↑ Conclusions and Future Works

Conclusions

- We studied SVM and Statistical Learning Theory.
- We found that we need so many sample data for utilizing SVM.

Future Works

• Finding a solution to above problem.