

Maximal Output Admissible Set (2) Tekys Institute of Technolog The maximal output admissible set can be defined as

$$S_x = \left\{ x_0 \in \mathfrak{R}^n \middle| y(t; x_0) \in Y, \forall t \in Z^+ \right\}$$

where Y is an output constraint.

In our work, we concentrate on keeping the trajectory of a state xⁱ_k inside the constraint set with the constant reference input uⁱ_k.

$S_{x} = \left\{ (x_{0}, u) \middle| x(t; x_{0}, u) \in X, x_{0} \in X, u \in U, \forall t \in Z^{+} \right\}$

- Remark : Only the initial condition and reference input are required for guaranteeing the constraint satisfaction.
- The details of MOA calculation are studied in Gilbert's work[Gilbert,1991].

Image: Non-State RegionReference (Input) Selection• Definition (Safe region)
- The safe region is the duality set of the collision
region.Reference (Input) Selection
$$S^{i,j} = \left\{ (x^i, u^i, x^j, u^j) \middle| (x^i, u^i) \in S_x, (x^j, u^j) \in S_x \right\}$$

- The safe region can be computed by the
following set equation.In the previous work, we chose the direction of the
reference input r^i_k based on only the position of neighbor.
Here, we add more factor to consider the reference. $S^{i,j} = S_x \times S_x \setminus O_{\infty}^{i,j}$ Observe the direction of the
reference input r^i_k based on only the position of neighbor.
Here, we add more factor to consider the reference. $P_{i,j}^{i,j} = S_x \times S_x \setminus O_{\infty}^{i,j}$ Observe the direction of the
reference input r^i_k based on only the position of neighbor.
Here, we add more factor to consider the reference. $P_{i,j}^{i,j} = S_x \times S_x \setminus O_{\infty}^{i,j}$ Observe the direction of the avoidance
zone.

A	Avoidance Zone
	Tokyo Institute of Technology
•	 Definition (Avoidance Zone) Avoidance Zone A^t₂ is the set of the position such that the angle, between the vector from current robot to considered position and to obstacle, is more than π/2.
	$D(p_1, p_2, p_3) = \cos^{-1} \left(\frac{(p_1 - p_2)(p_1 - p_3)}{ p_1 - p_2 p_1 - p_3 } \right)$
	$A_{z}^{i,j} = \left\{ p \in R^{n_{p}} \left D(p^{i}, p, p^{j}) \right \ge \frac{\pi}{2} \right\} p_{2}$
	$A_z^i = \bigcap_{j \in N(i)} A_z^{i,j}$ \mathbf{p}_1 \mathbf{p}_3
Tokyo Institu	rt of Technology Faile Laboratory

