\mathbf{T}

Outline

Introduction to Sensor Networks

FL07-18-1 Tatsuya Miyano

itute of Technol

- 1. Introduction
- 2. Mobile Ad Hoc Networks
- 3. Controlled Mobility
- 4. Sensor Coverage
- 5. Network-Based Control
- 6. Conclusions and Future Works

m	Outline

- 1. Introduction
- 2. Mobile Ad Hoc Networks
- 3. Controlled Mobility
- 4. Sensor Coverage
- 5. Network-Based Control
- 6. Conclusions and Future Works

Tokyo Institute of Techn

☆	Ro	uting
	$egin{bmatrix} oldsymbol{x}_i(oldsymbol{k}+1)\ oldsymbol{y}_i(oldsymbol{k}+1)\end{bmatrix} = egin{bmatrix} oldsymbol{x}_i(oldsymbol{k})\ oldsymbol{y}_i(oldsymbol{k})\end{bmatrix}$	$i=1,2,\ldots,m$
	$ \begin{bmatrix} \boldsymbol{x}_i(\boldsymbol{k}+1) \\ \boldsymbol{y}_i(\boldsymbol{k}+1) \end{bmatrix} = \begin{bmatrix} \frac{\sum_{\boldsymbol{j} \in \mathcal{N}_i} x_{\boldsymbol{j}}(\boldsymbol{k})}{d_{\boldsymbol{i}}} \\ \frac{\sum_{\boldsymbol{j} \in \mathcal{N}_i} y_{\boldsymbol{j}}(\boldsymbol{k})}{d_{\boldsymbol{i}}} \end{bmatrix} $	$i=m+1,m+2,\ldots,n$
\mathcal{N}_i : The $(\boldsymbol{x}_i(\boldsymbol{k}),$	the Set of Neighbors of the i the $y_i(k)$: Coordinate of the i t	Node d_i : Cardinality of that Set Node at the time k

The first \mathcal{M} nodes are at the boundary and have fixed known coordinates. The remaining $\mathcal{N} - \mathcal{M}$ nodes are in the interior of the region whose virtual coordinates change in accordance of the above iteration. The above equation is written as

 $\boldsymbol{x}_{inl}(\boldsymbol{k}+1) = (\boldsymbol{D}+\boldsymbol{B})^{-1}\boldsymbol{A}\boldsymbol{x}_{(nl}(\boldsymbol{k}) + (\boldsymbol{D}+\boldsymbol{B})^{-1}[\boldsymbol{b}_{1}\boldsymbol{b}_{2}\dots\boldsymbol{b}_{m}]\boldsymbol{x}_{p}$ $\boldsymbol{y}_{int}(\boldsymbol{k}+1) = (\boldsymbol{D}+\boldsymbol{B})^{-1}\boldsymbol{A}\boldsymbol{y}_{int}(\boldsymbol{k}) + (\boldsymbol{D}+\boldsymbol{B})^{-1}[\boldsymbol{b}_{1}\boldsymbol{b}_{2}\dots\boldsymbol{b}_{m}]\boldsymbol{y}_{p},$ where $\boldsymbol{x} = [\boldsymbol{x}_{p}, \boldsymbol{x}_{int}]^{T}$.

A	Routing
Theorem In steady the conve	state, the virtual coordinates converge to points in x hull of the boundary nodes. Moreover, the coeffici- e virtual coordinates can be explicitly calculated as
$ar{m{x}} = \lim_{k o k}$	$\mathbf{x}_{int}(\mathbf{k}) = (\mathbf{D} + \mathbf{B} - \mathbf{A})^{-1} [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_m] \mathbf{x}_p$
$ar{m{y}} = \lim_{k o }$	$\mathbf{n}_{\infty} \mathbf{y}_{int}(\mathbf{k}) = (\mathbf{D} + \mathbf{B} - \mathbf{A})^{-1} [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_m] \mathbf{y}_p$
The key f	acts to prove the above theorem are as follows. $\mathbf{P} + \mathbf{B}^{-1} \mathbf{A} > 1$

$$\sum_{i=0}^{\infty} [(D+B)^{-1}A]^{i}(D+B)^{-1} = (D+B-A)^{-1}$$

Outline

Mobile Ad Hoc Networks

Mobility Models for Ad Hoc Networks

T. Camp et al., 2002.

办

The performance of a routing protocol can vary significantly with different mobility models.

| ☆ |

 \mathbf{T}

Topology Control

Objectives

Power Efficiency

1. Introduction

2. Mobile Ad Hoc Networks

5. Network-Based Control

6. Conclusions and Future Works

Controlled Mobility
Sensor Coverage

- e.g. Cost of Transmission, Cost of Mobility.
- Robustness of Communications
- e.g. Network Size, Irregular Paths.

The proposed algorithms guarantee these properties.

- Connectivity
- Convergence

 $\begin{tabular}{|c|c|c|c|} \hline Topology Control \\ \hline Topology Control Algorithm \\ \hline x_i : current position of node i. \\ \hline x_i : current position of node i. \\ \hline x_i : updated position of nod$

\mathbf{x}	Outline	
		Tokyo Institute of Technoto

- 1. Introduction
- 2. Mobile Ad Hoc Networks
- 3. Controlled Mobility
- 4. Sensor Coverage
- 5. Network-Based Control
- 6. Conclusions and Future Works

Voronoi Partition

Given $S \subset \mathbb{R}^2$ and a set $\mathcal{P} = \{p_1, p_2, \dots, p_n\} \subset S$ of n distinct points, the Voronoi partition of S generated by \mathcal{P} is the collection of sets $\{V_1(\mathcal{P}), V_2(\mathcal{P}), \dots, V_n(\mathcal{P})\}$ defined by

$$V_i(\mathcal{P}) = \{ q \in S | \|q - p_i\| \leq \|q - p_j\|, \forall p_j \in \mathcal{P} \}.$$

★ Sensor Coverage

Distortion Problem

 $f(||q - p_i||)$: Performance Function $\phi(q)$: Density Function $H(\mathcal{P})$: Distortion Function

Sensor Coverage

Mobile Sensor Network Deployment using Potential Fields U: Scalar Potential Field F: Force x: Position of the Node x_i : Position of the other Node or Obstacle $r_i = |x_i - x|$ k: Coefficient m: Mass ν : Viscosity Coefficient

$\mathbf{\pi}$

Outline

- 1. Introduction
- 2. Mobile Ad Hoc Networks
- 3. Controlled Mobility
- 4. Sensor Coverage
- 5. Network-Based Control
- 6. Conclusions and Future Works

办			

- 1. Introduction
- 2. Mobile Ad Hoc Networks

Outline

Tokyo Institute of Techno

32

- 3. Controlled Mobility
- 4. Sensor Coverage
- 5. Network-Based Control
- 6. Conclusions and Future Works

|

Conclusions and Future Works

33

Fujita Labor

Conclusions

titute of Tec

I surveyed Sensor Networks.

Future Works

Tokyo Institute of Technology

- Controlled Mobility
- Balancing the Power Usage of each Node.
- Network-Based Control
- Specifying the Problem.
- Studying Support Vector Machine.