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Introduction

Multi Agent System

Same properties for each agent.

3D Attitude Coordination Problem

Have the same (face) direction at steady state.
3D dimensions

Collision Avoidance

Each agent doesn’t have the same position at the same time.
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Problem Formulation (1)

Agent Model

In this work, we will consider agent as a holonomic point-robot
which means that the robot can be controlled via linear velocity
and angular velocity (body frame) independently.

Note : Relationship between linear and angular velocity

Although we can control those two variables independently, the
linear velocity and angular velocity (world frame) both depend on
the same rotation matrix.
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Problem Formulation (2)

Kinematic Model

The kinematic model for each agent is represented as

q̇i = eζ̂ivi (1)

ζ̇i = eζ̂iwi (2)

ζi = θiξi i = 1, . . . , n (3)

when eζ̂i ∈ SO(3)

qi ∈ R3 is the position in a world frame.

vi ∈ R3 is the linear velocity in a body frame.

wi ∈ R3 is the angular velocity in a body frame.
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Problem Formulation (3)

Definition 1

A group of n-agent is said to achieve attitude coordination
problem, if

lim
t→∞

(

eζ̂i − eζ̂j

)

= 0,∀j 6= i. (4)

Definition 2

Two agents are said to be collided, if

qi,t = qj,t,∀j 6= i. (5)
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Problem Formulation (4)

Sensing Region Set

Sensing region is the sphere space that the agent can detect
others. It was defined as Ni = {k | ‖qi − qk‖ < rt}.

Collision Avoidance Region Set

Collision avoidance region is the sphere space that the agent will
try to avoid other agents, which are in the same region. It was
defined as Mi = {k | ‖qi − qk‖ < rs}.
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Problem Formulation (5)

Assumption

1 An agent can detect other agents and then form the strongly
connected graph for connection.

2 The communication between agent is two-way direction
(undirected graph).

3 Sensing region is bigger than collision avoidance region
(rt > rs).
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Proposed Controller

Theorem

Consider a space R3 with n agents by specified agent model. From
the assumption, the agent will achieve attitude coordination
problem with collision avoidance property using the following
controller

When rs ≤ ‖qi − qk‖ < rt : vi = c

wi = k1

∑

j∈Ni\Mi

skew(e−ζ̂ieζ̂j )

which k1 > 0 (6)

When ‖qi − qk‖ < rs : vi = −e−ζ̂i

∑

k∈Mi

∂Vik

∂qi

wi = 0 (7)
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Proof (1)

For collsion avoidance purpose, we use the following potential
function:

Vik =











a
d

d < r

h(d2 − r2
s)

2 r ≤ d < rs

0 d ≥ rs

when d is defined as ‖qi − qk‖

a r and h are chosen to guarantee that Vik is continuously
differentiable at point d = r and d = rs which
r2
s = 3r and a = 4hr3.
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Proof (2)

The derivative of Vik are computed as

V̇ik =











− a
d3 (qi − qk)q̇i d < r

−4h(r2
s − d2)(qi − qk)q̇i r ≤ d < rs

0 d ≥ rs

when d is defined as ‖qi − qk‖

Now consider a candidate Lyapunov function for multi-agent
system:

Vi =
1

2
tr(I − eζ̂i) +

∑

k∈Ni

Vik
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Proof (3)

When d ≥ rs (out of collision avoidance region):

Vi =
1

2
tr(I − eζ̂i)

∵ V =

n
∑

i=1

Vi =
1

2

n
∑

i=1

tr(I − eζ̂i)

∴ V̇ =

n
∑

i=1

skew(eζ̂i)∨wi
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Proof (4)

Apply controller in (6);

V̇ =

n
∑

i=1

skew(eζ̂i)∨(e−ζ̂ieζ̂j )∨

From the idea in [Igarashi, 2007]; We get

V̇ ≤ −k1

n
∑

i=1

∑

j∈Ni

1

2
λmin(e

ζ̂i + e−ζ̂i)tr(I − e−ζ̂ieζ̂j )

≤ 0

Using Lasalle’s invariance principle, we can prove that all agents
reach the same attitude at steady state.
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Proof (5)

When r ≤ d < rs:

Vi =
1

2
tr(I − eζ̂i) +

∑

k∈Mi

h(d2 − r2

s)
2

V̇ =

n
∑

i=1



skew(eζ̂i)∨wi −





∑

k∈Mi

4h(r2

s − d2)(qi − qk)
T



 eζ̂ivi





From (2), apply the controller in (7)

V̇ =

n
∑

i=1







0− ‖
∑

k∈Mi

4h(r2

s − d2)(qi − qk)‖
2






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Proof (6)

V̇ = −16h2

n
∑

i=1

∑

k∈Mi

(r2

s − d2)2d2

< 0 (8)

And then consider when d < r :

V =

n
∑

i=1





1

2
tr(I − eζ̂i) +

∑

k∈Mi

(a

d

)





V̇ =

n
∑

i=1







skew(eζ̂i)∨wi −
∑

k∈Mi

( a

d3
(qi − qk)

T eζ̂ivi

)






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Proof (7)

Apply the controller in (7) :

V̇ =

n
∑

i=1







0− ‖
∑

k∈Mi

a

d3
(qi − qk)‖

2







= −

n
∑

i=1

∑

k∈Mi

a2

d4

< 0 (9)
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Proof (8)

From the fact that 0 < tr(I − eζ̂i) < 2 and assume that at the
initial state, the collsion didn’t occur, therefore, V (0, q) < ∞.
From (8),(9), so V (t, q) < V (0, q) < ∞ and thus collision
avoidance was proved.

Note: Collsion condition

V (t, q) →∞⇔ ‖qi − qk‖ → 0
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Simulation : Position
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Simulation : ζ
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Conclusion and Future works

Conclusion

In this presentation, we have proposed the controller for achieving
the flocking problem with the property of collision avoidance. It
shows that the system will make each agent avoids the collision
and converges to the same direction.

Future works

Develop the controller to handle both linear and angular velocity at
the same time so the agents converge to last value faster.
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