

Outline

1. Introduction

☆

- 2. Feasibility Region
- 3. Dual-Mode MPC Algorithm
- 4. Numerical Simulations
- 5. Conclusions and Future Works

	Problem Formulation
$x(t+1) = A(\Delta)$	$x(t) + B(\Delta)u(t)$
State and input	$x(t) \in \mathcal{X}, u(t) \in U, \forall t \in \mathcal{Z}_+$
20 Daints rando	m parameter on the probability space
$(D, \mathcal{D}, \operatorname{Prob}_{\Delta}).$	
We will design t mode MPC strat	he 'predicted' input sequence via a dual- egy.
$u(t+k \mid t) =$	$= -Kx(t+k \mid t) + c(k)$ Mode 1
Prediction time	$if k \in \{0,, n_c - 1\}$
$u(t+k \mid t) =$	$= -Kx(t + k \mid t)$ Mode 2
	if $k \ge n_c$

Problem Formulation	Tokyo Institute of Technology
$u(\underline{t+k} \mid \underline{t}) = -Kx(t+k \mid t) + c(k)$ Prediction time Current time if $k \in \{0, u(t+k \mid t) = -Kx(t+k \mid t)\}$	Mode 1 $(1,, n_c - 1)$ Mode 2
K minimizes the infinite horizon LQ cost, J_{L} , Q > 0, R > 0 in the absence of system con	_c , with weights nstraints.
	9

A	Feasibility Regi	ON Tokyo Institute of Technology
Prediction $x(t+k+1)$ $u(t+k \mid t)$	$Model t) = \Phi(\Delta)x(t+k t) = -Kx(t+k t) + c(k)$	$+ B(\Delta)c(k)$
c(k) = 0 The following prediction predict	$\forall k \ge n_c \qquad \Phi(\Delta) :=$ ng augmented model is ec	$= A(\Delta) - B(\Delta)K$ quivalent to the above
$\xi(k+1) = \tilde{A}(\lambda)$ $u(k) = \tilde{C}\xi(k)$	$\begin{split} \widehat{\boldsymbol{\zeta}}(k) & \boldsymbol{\zeta}(k) \coloneqq \begin{bmatrix} \boldsymbol{x}^{\mathrm{T}}(t+k \mid t) \\ \widetilde{\boldsymbol{c}}(k) \coloneqq \begin{bmatrix} \boldsymbol{c}^{\mathrm{T}}(k) & \boldsymbol{c}^{\mathrm{T}}(k) \end{bmatrix} \end{split}$	$ \widetilde{c}^{\mathrm{T}}(k) \Big]^{\mathrm{T}} $ +1) $c^{\mathrm{T}}(k+n_{c}-1) \Big]^{\mathrm{T}} $
$\begin{bmatrix} \widetilde{A}(\Delta) := \begin{bmatrix} A(\Delta) \\ Augmented \\ Take Institute of Technology \end{bmatrix}$	$ \begin{array}{c} -B(\Delta)K & B(\Delta)E\\ 0 & I_L \end{array} \right] \widetilde{C} \coloneqq \left[-K \\ \text{Model} \end{array} $	$E = \begin{bmatrix} I & 0 & \dots & 0 \end{bmatrix}$ $I_L: nilpotent matrix$

\mathbf{T}	Feasibility Region	ite of Technology
$\begin{array}{c} \textbf{Definition}\\ \textbf{A set } \mathcal{F}\\ \text{satisfies} \end{array}$	on:Feasibility Region (FR) is said to be an FR if its any element $\xi(0) \in \mathcal{I}$ $\xi(k) \in \mathcal{X} \times U \forall \Delta \in D, \ k \in \mathcal{Z}_+.$	Ē
We empl on-line c	loy an ellipsoidal feasibility region (EFR) to recomplexity. Then we obtain EFR $\Omega(Q_p)$.	duce
Takyo Institute of Tach	hnology	Laboratory 11

1. Introduction

☆

- 2. Feasibility Region
- 3. Dual-Mode MPC Algorithm
- 4. Numerical Simulations
- 5. Conclusions and Future Works

Conclusions and Future Works

Conclusions

 $\mathbf{\Psi}$

We tried to demonstrate the effectiveness of our method through the numerical simulations. But in fail.

·Future works

- •More meaningful numerical simulations
- •Extension to exact-linearized or linearized model