Coverage Control Problem with Anisotropic Sensors – part I

FL07-08-2

Azwirman Gusrialdi
Outline

• Coverage Problem Review (Proof)
• Problem Setting of Anisotropic case
• Anisotropic Voronoi Partition
• Future Works
Coverage Problem - Review

- **Objective**: Given agents \((p_1, \ldots, p_n)\), convex environment \(Q\), achieve optimal coverage.

- Let \(\phi\) be density function.

- Let \(f\) be sensing performance (non-decreasing)

\[f(\|q - p_i\|) : \text{how poor } p_i \text{ to sense } q \]

- **Objective function**:

\[
H(P, W) = \int_{Q} f(\|q - p_i\|) \phi(q) dq = \sum_{i=1}^{n} \int_{w_i} f(\|q - p_i\|) \phi(q) dq
\]

Coverage Problem - Review

For $f(\|q - p_i\|) = \|q - p_i\|^2$ and dynamics $p_i = u_i$

$$u_i = -k(p_i - C_{v_i}) \quad (1)$$

Assume that $V(P) = \{V_1, \cdots, V_n\}$ is continuously updated

Proposition (Continuous-time Lloyd descent): For the closed loop system induced by (1), the sensors location converges asymptotically to the set of critical points of H, i.e., the set of centroidal Voronoi configurations on Q. Assuming this set is finite, the sensors location converges to a centroidal Voronoi configuration.

Coverage Problem - Review

Proof:

\[
\frac{\partial H}{\partial p_i}(P) = \int_{V_i(P)} \frac{\partial}{\partial p_i} f(\|q - p_i\|) \phi(q) dq
\]

\[
H(P) = -\sum_{i=1}^{n} \int_{V_i(P)} \|q - p_i\|^2 \phi(q) dq
\]

\[
\frac{\partial H}{\partial p_i}(P) = 2 \int_{V_i(P)} (q - p_i) \phi(q) dq = 2M_{V_i(P)} \left(CM_{V_i(P)} - p_i \right)
\]

\[
\frac{d}{dt} H(P(t)) = \sum_{i=1}^{n} \frac{\partial H_v}{\partial p_i} \dot{p}_i
\]

\[
= -2k \sum_{i=1}^{n} M_{V_i(P)} \left\| p_i - CM_{V_i(P)} \right\|^2
\]

- By LaSalle’s principle, the sensors location converges to the set of centroid Voronoi configurations.
If the set is a finite collection of points, then $P(t)$ converges to one of them

LaSalle’s principle: Let $\Omega \subset D$ be a compact set that it is positively invariant with respect to X. Let $x(0) \in M$ and x_* be an accumulation point of $x(t)$. Then $x_* \in M$ and $\text{dist}(x(t), M) \to 0$ as $t \to \infty$

Corollary: If the set M is a finite collection of points, then the limit of $x(t)$ exists and equals one of them
Coverage Problem - Review

\[\frac{\partial H(P)}{\partial p_1} = \int_0^{p_1+p_2} \frac{\partial}{\partial p_1} \|q - p_1\|^2 dq \]

1 dimension 2 agents, \(Q=[0,1]\)

Proof:

\[\frac{\partial H(P)}{\partial p_1} = \frac{\partial}{\partial p_1} \int_0^{p_1+p_2} \|q - p_1\|^2 dq + \frac{\partial}{\partial p_1} \int_{p_1/2}^{p_1+p_2} \|q - p_2\|^2 dq \]

\[\frac{\partial}{\partial p_1} \int_0^{p_1+p_2} \|q - p_1\|^2 dq = \lim_{h \to 0} \frac{1}{h} \left(\int_0^{p_1+p_2} \|q - p_1 + h\|^2 dq - \int_0^{p_1+p_2} \|q - p_1\|^2 dq \right) \]

\[= \lim_{h \to 0} \frac{1}{h} \left(\int_0^{p_1+h+p_2} \|q - p_1 + h\|^2 dq + \int_0^{p_1+p_2} \|q - p_1 + h\|^2 - \|q - p_1\|^2 dq \right) \]

Mean value theorem

\[= \lim_{h \to 0} \frac{1}{h} \left(\int_0^{p_1+h+p_2} \|q - p_1 + h\|^2 dq + \int_0^{p_1+p_2} \frac{\partial}{\partial p_1} \|q - p_1\|^2 dq \right) \]

\[= \lim_{h \to 0} \frac{1}{h} \|c - p_1 + h\|^2 \left(\frac{p_1 + h + p_2}{2} - \frac{p_1 + p_2}{2} \right), \exists c \in \left[\frac{p_1 + p_2}{2}, \frac{p_1+p_2+h}{2} \right] \]

\[= \lim_{h \to 0} \frac{1}{2} \|c - p_1 + h\|^2, \exists c \in \left[\frac{p_1 + p_2}{2}, \frac{p_1+p_2+h}{2} \right] \]
Coverage Problem - Review

\[
\frac{1}{2} \left\| \frac{p_2 - p_1}{2} \right\|^2 + \int_0^{p_1 + p_2} \frac{\partial}{\partial p_1} \left\| q - p_1 \right\|^2 dq
\]

\[
\frac{\partial}{\partial p_1} \int_{p_1 + p_2}^{1/2} \left\| q - p_2 \right\|^2 dq = \lim_{h \to 0} \frac{1}{h} \left(\int_{p_1 + h + p_2}^{1/2} \left\| q - p_2 \right\|^2 dq - \int_{p_1 + p_2}^{1/2} \left\| q - p_2 \right\|^2 dq \right)
\]

\[
= -\lim_{h \to 0} \frac{1}{h} \left(\int_{p_1 + p_2}^{1/2} \left\| q - p_2 \right\|^2 dq \right)
\]

\[
= -\frac{1}{2} \lim_{h \to 0} \left\| c - p_2 \right\|^2, \exists c \in \left[\frac{p_1 + p_2 + h}{2}, \frac{p_1 + p_2}{2} \right]
\]

\[
= -\frac{1}{2} \left\| \frac{p_2 - p_1}{2} \right\|^2
\]

\[
\therefore \frac{\partial H(P)}{\partial p_1} = \int_0^{p_1 + p_2} \frac{\partial}{\partial p_1} \left\| q - p_1 \right\|^2 dq
\]
Simulation-1

- Given 9 agents distributed in a square area of density $\Phi=1$
Simulation - 2

Case 1

position (y)

Case 2

position (x)

position (y)

position (x)

$H_1 > H_2$
Coverage - Anisotropic sensor

Goal: 3D Coverage Problem

First step: 2D Coverage Problem with Orientation of robots

Uniform (isotropic) sensor
- Sensing degradation only depends on distance

Non-uniform (anisotropic) sensor
- Sensing degradation depends on distance and orientation

Cortes et al.

Today’s talk: Uniform (isotropic) sensor - Sensing degradation only depends on distance.
Coverage – Anisotropic sensor

\[\| q - p_i \|_L = (q - p_i)^T L (q - p_i) \]

\[
L = \begin{pmatrix}
\cos \theta_i & \sin \theta_i \\
-\sin \theta_i & \cos \theta_i \\
\end{pmatrix}
\begin{pmatrix}
\frac{c^2}{a^2} & 0 \\
0 & \frac{c^2}{b^2} \\
\end{pmatrix}
\begin{pmatrix}
\cos \theta_i & \sin \theta_i \\
-\sin \theta_i & \cos \theta_i \\
\end{pmatrix}
\]

\(\theta_i \) : orientation of \(i \)-th sensor

\(a, b \) : length of major and minor axis of the ellipse

Note:

If \(L = I \) \(\implies \| q - p_i \| = (q - p_i)^T (q - p_i) \)

(Cortes et.al)
Problem Setting

Find P, Θ, W that minimize the function:

$$H(P, \Theta, W) = \sum_{i=1}^{n} \int_{W_i} f\left(\|q - p_i\|_L \Phi(q)\right) dq$$

Questions:

1. What is the Optimum Partition?
2. How do we optimize? One after another or at the same time?
Q: What is the optimum partition for a fixed sensors’ position and orientation?

- Anisotropic Voronoi partition:
 \[V_i^* = \left\{ q \in Q \mid \| q - p_i \|_L \leq \| q - p_j \|_L, \forall j \neq i \right\} \]

- Determined by sensor’s position and Orientation

Lemma: the boundary between two adjacent \(V_i^* \) and \(V_j^* \) is a quadratic curve
Anisotropic Voronoi Partition

Proof:
Any point q in $V_i^* \cap V_j^*$ satisfies $\|q - p_i\|_L = \|q - p_j\|_L$
i.e. $(q - p_i)^T L_i (q - p_i) = (q - p_j)^T L_j (q - p_j)$. It is clear that this equation is quadratic in q. (Q.E.D)

Remark:

$$Ax^2 + By^2 + Cxy + Dx + Ey + K = 0,$$

$$A = b^2 (\cos^2 \theta_i - \cos^2 \theta_j) + a^2 (\sin^2 \theta_i - \sin^2 \theta_j)$$

$$B = a^2 (\cos^2 \theta_i - \cos^2 \theta_j) + b^2 (\sin^2 \theta_i - \sin^2 \theta_j)$$

$$C = (a^2 - b^2) (\sin 2\theta_i - \sin 2\theta_j)$$

If the sensors have the same orientation, the boundary will be a line.
Anisotropic Voronoi - Examples

boundary
Future Works

The optimization function:

\[H(P, \Theta) = \sum_{i=1}^{n} \int_{v_i} f(\|q - p_i\|_L \Phi(q) dq) \]

- Fixed orientation case:
 1. what is the optimum position? (centroid of AVT?)
 2. Does \[\frac{\partial H(P)}{\partial p_i} = \int_{v_i(P)} \frac{\partial}{\partial p_i} \|q - p_i\|^2 dq \] still hold?
- For fixed position case, what is the optimum orientation?
- Can we do fixed orientation opt. \(\rightarrow\) fixed position opt.?