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Consensus 2 (Solution of Consensus Problem)

(Potential function base)
(Lyapunov theorem)
(LaSalleinvariant principle)

(Today’ s Presentation)

/ (Matrix Analysis Base) \
(Eigenvalue analysis)

(Frequency domain analysis)

(Pole assignment)

K (Nyquist stability criterion)
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(eigenvalue analysis)

(theorem)

(Courant-Fischer minimax theorem)
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AE Cnxn ( AE Rnxn)
A== 2 A

= min max X Ax
dimSsk—1xe S [x|-1

, ScC" ( ScR")
( : (1) pp. 125)

(Gersgorin’ s theorem)
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2y (Fundamental M athematical Theory)
(Gersgorin’stheorem)
« . : pp. 284)
A=[g;]e C™ s 2n
R:={seCi|s-a, K> |a |}
=1
J#i

S i={se Cils-a, K Y |3, b
A
T-Ornds) Tedr) T=Us)
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(example)( : (1) pp. 192)
Now Consider

@ 1 3 A (eigenvalue)
A=|2 €4) 0 A=-1 1=-5+3
0 2 €4
Calculate ]
R={se Cils-3, K} |3 ]
i=1 A
R ={se C;|s+3[< 4}
i=2
R, ={se C;|s+4K 2
i=3
R, ={seC;|s+4 2
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(stochastic matrix)

1
(stochastic matrix : al of its row-sums(or column-sums) are 1)

mm) Pi-1 P (stochastic matrix)

1:[1'...11]T
( , : pp. 307)
(example)
2 1 1 (2 1 1]
3 6 6 3 6 6(1] [1
1 3 1 ‘ 1 3 1
P==- - = - - —=|1|=|1
8 4 8 8 4 8
1 14 11 4
10 10 5 10 10 5
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2y (example of graph)
Disconnected balanced
O A
Wesakly connected Disconnected symmetric

/.

Strongly connected Strongly connected

L
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Dynamics
X=-LX —L: (graph laplacian)
Isstable
-L
( 1 )

(All the eigenvalues of —L have negative real-parts)

(example)
1 2 1 -1 201 1
L={0 1 -1 ‘—L:O -1 1

2 3 -1 0 1 1 0 -1
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(example)
1 @ 1 1
NG
2 3 1 0
1=1
R ={seC;|s+2k 2
=2
R, ={se C;|s+1k1
=3

R, ={se C;|s+1k 1
-L

(All the eigenvalues of —L are located in left-half plane) .
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(graph laplacian)
(property)
1, L=[l;]=D-A l. >0 Vi

m) -L=[-1,] -I,<0 Vi
2,11=0 1=[1--- 1"
‘ aii:Z|aij|

J#i

1 R:={seCils—a K> |a}
=1
J#i
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Theorem
Consider a network of integrator agents with equal communication

time-delay 7 >0 inall links.
X =U,
Assume the nework topology G isfixed, undirected, and connected.
Then, protocol
u = > a[xt-7)-x(t-7)]
vieN;
Globally asymptotically solves the average-consensus problem if
and only if following conditions are satisfied
V4
e (L) :Maximum eigenvalue of graph laplacian
R.Olfati-Saber and R. Murray
“Consensus Problems in Networks of Agents With Switching Topology and Time-Delays”

|EEE Trans. Automat. Contr. Vol. 49, No. 92004 Pp.1520-1533
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e (0,7) with 7 =
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7=0 . Time-delay 7

G(s)=(sl +e™L)

det(sl +e™®L)=0
s
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det(sl +e L)
=det(T (sl +&™L)T)
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jo-e7°1 =0 7
jo—e17°) = jw— A (cos(r' w) - j Sin(z’ w))
= jw— A cos(r' w) - jA sin(t’ w)

=det(sl +e T'LT) =0
:lﬂ[(s—e”sﬂi) A _ w—A sn(t w)=0
i-1 (eigenvalue fo graph laplacian) J cos(r' @) =0 cos(r' ) = 0 T*w=£+ -
y = * I * 2
=t . w—-AsSn(t w)=0
jo-e'""4 =0 7 . . 1(r
—+nt-7 4 =0 T =—|—+Nx
2 A=0 ) A\ 2
7 >0 T
T =
. 2o (L) .
2y Small World network 2y Small World network

Small-World phenomenon is a feature of certain complex networksin
Which any two arbitrary nodes can be connected using afew links.
This means that the average distance between two nodesisrelatively

Small in small-worlds.

In 1998, Watts & Strogatz(WS) introduced an model called
small-world network with the capability to interpolate between aregular
lattice and a random graph using a single parameter p
To construct a small-world network, one starts with a one-dimensional
Lattice on aring with n nodes in which every node is connected to its
Nearest neighbors up to the range k. Then, one rewires every link with
probability p by changing one of the end points of alink uniformly

at random
Reza Olfati-Saber “Ultrafast Consensus in Small-World Networks’

Proc. of the American Control Conference pp.2371-2378 2005 I
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one starts with a one-dimensional Lattice on aring with n nodes in which
every node is connected to its Nearest neighbors up to the range 2

p=0 p=0.1

Then, one rewires every link with probability p by changing one of

the end points of alink uniformly at random
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algebraic connectivity(second minimum eigenvalue of graph laplacian,)
of asmall-world network can be made more than 1000 times greater than
aregular network

Particularly, algebraic connectivity(second minimum eigenval ue of
graph laplacian 4,) isthe measure of speed of convergence
(or performance) of the consensus algorithm

a
A, ishigh ==m) Speed of convergenceis high
small-world network have high convergence speed

But

A, ishigh ==) A __ ishigh
m=) Delay sensitivityislow 7 =—°

2. (L)
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h Dynamics of Formation Motion

Block Diagram

U(s)
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U (s): reference
of the lead

U(s)

G —B—0

P(s) : transfer function D : degree matrix

__POC(s

H(s) =
C(s) : local controller A : adjacency matrix ) 1+ P(s)C(s) .
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Block Diagram  1===------------------------- !

H(s)
Y.(9)

U(s)
—

U (s): reference
of the leader

Yi(s)

U(s)

___________________________ JH(s)
P(s) : transfer function D : degreematrix 1y (g) = P (SC(S)

C(s) : local controller A : adjacency matrix 1+ P(s)C(s) .




